NYOJ - 42:一笔画问题

博客介绍了NYOJ的一笔画问题,涉及图论概念,如欧拉图和欧拉通路。通过判断图中度数为奇数的顶点个数来确定是否存在一笔画的可能性。给出了输入输出样例和解题思路,并提供了参考代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一笔画问题

来源:NYOJ

标签:图论,欧拉图,欧拉通路

参考资料:https://baike.baidu.com/item/欧拉图

相似题目:

题目

zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。
规定,所有的边都只能画一次,不能重复画。

输入

第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(1 <= A,B <= P),表示编号为A和B的两点之间有连线。

输出

如果存在符合条件的连线,则输出"Yes",
如果不存在符合条件的连线,输出"No"。

输入样例

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wingrez

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值