Yet another Computer Vision Library? No!

本文介绍了现代计算机视觉库CCV,详细讨论了四种流行的卷积神经网络(CNN),包括AlexNet、MattNet、AlexNet14以及VGG-D模型,并对比了这些网络之间的差异。同时,还探讨了网络拓扑、数据准备与增强等关键主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

History

Introduction

CCV : A Modern Computer Vision Library

Learning Curve

ConvNet

Everything is here:

ConvNet: Deep Convolutional Networks

Four popular CNNs

  • [AlexNet 12] ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, NIPS 2012
  • [MattNet] Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler, and Rob Fergus, Arxiv 1311.2901 (Nov 2013)
  • [AlexNet 14] One Weird Trick for Parallelizing Convolutional Neural Networks, Alex Krizhevsky, ICLR 2014 alex14
  • [VGG-D model trained] Very Deep Convolutional Networks for Large-Scale Image Recognition, Karen Simonyan, Andrew Zisserman, ICLR 2015
Differences
  • Network Topology
  • Data Preparation
  • Data Augmentation
  • Averaged Classification
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值