百练2010D: 括号描述问题

本文探讨了在POJ(在线判题系统)中遇到的2010D题目,该题目涉及括号的有效性和匹配性。通过分析,我们深入理解了如何解决这类括号描述问题,包括使用递归或栈数据结构来检查括号序列的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述:
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).

Following is an example of the above encodings:
	S		(((()()())))
	P-sequence	    4 5 6666
	W-sequence	    1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
输入
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
输出
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
样例输入
2
6
4 5 6 6 6 6
9 
4 6 6 6 6 8 9 9 9
样例输出
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
 二:题意理解: 、题目中关于括号的两种描述理解:对于长度为2N的括号序列,两个数组,其中P[i]表示就是对于数组中的右括号其左括号有多少个,而对于W[i]表示对每一个右括号而言,其对称的左括号到该右括号时所经历的左括号,其中包括这个右括号本身匹配的左括号;
②、结题的基本思想其实就是理解这两个括号描述方法的差别,对将P[i]形式转化为W[i]形式而言,引入一个辅助数组B[i],它表示每一个右括号与前一个右括号之间所隔离的左括号的数目,显然对于 i=0,B[i]=P[i],  此外,B[i] = P[i] - P[i-1];
③、计算W[i]的思想在代码中有明显体现,其实就是扫描 W[i] 和 B[i],当B[i]>0 时,说明 右括号 I 的左侧还有左括号,显然根据括号匹配的原则(最近原则),那么W[i]为1,此外匹配成功一次,要将Bi] -1; 当B[i] =0 时,那么就要向前寻找最近个一个不为0的B[k] 值,显然要求k<i,W[i] = 1+ (i-k);


 三 :源码:
#include <stdio.h>
#include <stdlib.h>

int main()
{
	int t, n;
	int i, j;
	int *B, *P, *W;
	
	scanf("%d", &t);
	while(t>0)
	{
		scanf("%d", &n);
		B = (int*)malloc(n*sizeof(int));
		P = (int*)malloc(n*sizeof(int));
		W = (int*)malloc(n*sizeof(int));
		
		for(i=0; i<n; i++)
		{
			scanf("%d", &P[i]);
			if(i==0)
				B[i] = P[i];
			else
				B[i] = P[i]-P[i-1];
		}
		
		for(i=0; i<n; i++)
		{
			if(B[i]>0)
			{
				W[i] = 1;
				B[i] --;
			}
			
			else
			{
				for(j=i-1; j>=0; j--)
				{
					if(B[j]>0)
					{
						W[i] = i-j+1;
						B[j]--;
						break;
					}
					else
						continue;
				}
			}
		}
		
		for(i=0; i<n; i++)
		{
			printf("%d ", W[i]);
			if(i == n-1)
				printf("\n");
		}
			
		free(B);
		free(P);
		free(W);
			
		t--;
	}
	
	system("pause");
	return 0;
}
					
			
			
			
			
			
			
			
			







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值