描述:
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
输入
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9二:题意理解: ①、题目中关于括号的两种描述理解:对于长度为2N的括号序列,两个数组,其中P[i]表示就是对于数组中的右括号其左括号有多少个,而对于W[i]表示对每一个右括号而言,其对称的左括号到该右括号时所经历的左括号,其中包括这个右括号本身匹配的左括号;
②、结题的基本思想其实就是理解这两个括号描述方法的差别,对将P[i]形式转化为W[i]形式而言,引入一个辅助数组B[i],它表示每一个右括号与前一个右括号之间所隔离的左括号的数目,显然对于 i=0,B[i]=P[i], 此外,B[i] = P[i] - P[i-1];
③、计算W[i]的思想在代码中有明显体现,其实就是扫描 W[i] 和 B[i],当B[i]>0 时,说明 右括号 I 的左侧还有左括号,显然根据括号匹配的原则(最近原则),那么W[i]为1,此外匹配成功一次,要将Bi] -1; 当B[i] =0 时,那么就要向前寻找最近个一个不为0的B[k] 值,显然要求k<i,W[i] = 1+ (i-k);
三:源码:
#include <stdio.h>
#include <stdlib.h>
int main()
{
int t, n;
int i, j;
int *B, *P, *W;
scanf("%d", &t);
while(t>0)
{
scanf("%d", &n);
B = (int*)malloc(n*sizeof(int));
P = (int*)malloc(n*sizeof(int));
W = (int*)malloc(n*sizeof(int));
for(i=0; i<n; i++)
{
scanf("%d", &P[i]);
if(i==0)
B[i] = P[i];
else
B[i] = P[i]-P[i-1];
}
for(i=0; i<n; i++)
{
if(B[i]>0)
{
W[i] = 1;
B[i] --;
}
else
{
for(j=i-1; j>=0; j--)
{
if(B[j]>0)
{
W[i] = i-j+1;
B[j]--;
break;
}
else
continue;
}
}
}
for(i=0; i<n; i++)
{
printf("%d ", W[i]);
if(i == n-1)
printf("\n");
}
free(B);
free(P);
free(W);
t--;
}
system("pause");
return 0;
}