Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
Source
题意:
对于给出的原括号串,存在两种数字密码串:
1.p序列:当出现匹配括号对时,从该括号对的右括号开始往左数,直到最前面的左括号数,就是pi的值。
2.w序列:当出现匹配括号对时,包含在该括号对中的所有右括号数(包括该括号对),就是wi的值。
简单模拟
用数组a[i]表示第i个右括号和第i+1个右括号间的左括号数
然后逐渐找和右括号匹配的左括号所处的位置
i-j
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int n,t,i,a[30],p[30],w[30],j;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&p[i]);
a[0]=p[1];
for(i=1;i<=n-1;i++)
{
a[i]=p[i+1]-p[i];
}
for(i=1;i<=n;i++)//一共n个右括号
{
for(j=i-1;j>=0;j--)//首先第i个到第i-1个右括号之间,若j--那右括号的数量就加1
{
if(a[j]>0)//相邻两右括号之间左括号的数量存在则可匹配(a[j]到a[j+1])
{
a[j]--;
break;
}
}
w[i]=i-j;//第i个右括号与第j个和第j+1个右括号之间的左括号匹配,i-j便是括号对之间右括号的数量
}
for(i=1;i<=n;i++)
{
if(i==n)
printf("%d\n",w[i]);
else printf("%d ",w[i]);
}
}
return 0;
}