
RS
文章平均质量分 50
推荐
buptwhq
这个作者很懒,什么都没留下…
展开
-
RS评估指标记录
2022一些论文与使用的指标一.评分1.RMSE(Root Mean Squard Error)、MAE(Mean Absolute Error)二.推荐列表准确率(Precision)和召回率(Recall)AUC命中率HR(Hits Ratio)三.排序归一化折损累计增益(Normalized Discounted Cumulative Gain,NDCG)平均倒数排名(Mean Reciprocal Rank, MRR)MAP(Mean Average Precision,平均准确率)e.g K=5原创 2022-02-11 00:01:55 · 1497 阅读 · 0 评论 -
preprocessing.LabelEncoder()使用
preprocessing.LabelEncoder()使用e.g. 1:from sklearn import preprocessingle = preprocessing.LabelEncoder()arr_gf = [1,2,3,'wom','wom','中文','中文']le.fit(arr_gf)one_hot_gf = le.transform(arr_gf)print(one_hot_gf)输出:[0 1 2 3 3 4 4]e.g. 2:csv_path = './原创 2022-02-04 18:12:23 · 3718 阅读 · 0 评论 -
载入预训练model权重
def load_pretrain_embedding(goods_path, seller_path): model = build_model() goods_model = tf.keras.models.load_model(goods_path) # 预训练模型 for i, pretrain_layer in enumerate(goods_model.layers): if isinstance(pretrain_layer, tf.keras原创 2022-02-04 17:30:31 · 1277 阅读 · 0 评论 -
标签shuffle
载入数据input1 = np.load('/root/whq/input/one_hot_1400/xf_p_n.npy')input2 = np.load('/root/whq/input/one_hot_1400/gf_p_n.npy')output_ = np.load('/root/whq/input/one_hot_1400/label_p_n_-1.npy')output_0 = np.load('/root/whq/input/one_hot_1400/label_p_n_0.npy原创 2022-02-04 17:03:49 · 982 阅读 · 0 评论 -
数据缺失类型:MCAR、MAR、MNAR
2022.01.231.Missing Completely at Random(MCAR)2.Missing at Random(MAR)3.Missing Not at Random(MNAR)参考:AI for Medical Prognosis以医生是否为每个病人记录血压为例,讲解三种缺失。1.Missing Completely at Random(MCAR)missingness not depend on anything,no bias (通过抛硬币,完全独立)p(missin原创 2022-01-23 12:53:19 · 12676 阅读 · 1 评论