动态规划之矩阵连乘

矩阵连乘问题—–动态规划
  • 算法思想:
  • 给定n个矩阵{A1,A2,……..An},相连的两个矩阵满足矩阵连成的的条件,计算矩阵连乘乘积的计算次序,使得依此次序计算矩阵连乘需要的数乘的次数最少.
  • 找出最优解的性质,刻画其特征结构
    对于矩阵连乘问题,最优解就是找到一种计算顺序,使得计算次数最少.
    设m[i][j]为从第i个矩阵到第j个矩阵相乘的最优解(记为A[i:j). 假设这个最优解是从第k个矩阵断开i<=k<=j,那么A[i,k]和A[k+1,j]也是相应矩阵连乘的最优解。
  • 建立递归关系
  • 设计算A[i:j],1<=i<=j<=n;所需要的最少数乘次数m[i][j],则整个问题的最优解就是m[i][n];
  • 当i==j时,即m[i][i]代表一个矩阵,不会和其它矩阵相乘,所以乘的次数为0次,所以m[i][i],即m矩阵的对角线值都为0;
  • 当i < j时,m[i][j]=min{m[i][k]+m[k+1,j]+pi-1*pk*pj} ; (相当于把i~j这j-i个矩阵分成两段,看哪种分法的次数最少),
    这述
    在这里,我们用s[i][j]来表示第i个矩阵到到第j个矩阵连乘在哪个矩阵后面断开能得到最优解。
    注意:上面的的算法分析没有用到数组的0号下标,下面的程序用到了0号下标.即(m[0][1])代表的是第一个矩阵和第二个矩阵相乘.
    看代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int matrix_chain(int *p,int n,int **m,int **s)
{
    int i,j,r,k;
    for(i=0;i<n;i++){
        m[i][i]=0;
    }
    //r为连成矩阵的个数.
    for(r=2;r&l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值