《Nature Methods》是Nature旗下最重要子刊之一,也是方法论领域的权威刊物,其影响因子自从2004年创刊开始就一路飙升,在2014年已经达到32.072。这个月更期刊的受众是学术和产业界的从事实验工作的研究人员。它旨在为研究人员提供新工具来方便研究,Nature Methods强调方法的实用性和即时性。
《Nature Methods》选出了 2016 您最值得关注的八项技术:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuclear architecture)、动态蛋白质结构(Protein structure through time)、精准光遗传学(Precision optogenetics)、高度复合成像(Highly multiplexed imaging)、深度学习(Deep learning)、蛋白定位亚细胞图谱(Subcellular maps)、综合单细胞图谱(Integrated single-cell profiles)。另外,《Nature Methods》也选出了 2015 年最受关注技术成果:单颗粒冷冻电镜。
2016年值得关注的方法论深度学习(Deep learning)新的计算工具从大量的序列数据集中学习复杂模式。机器学习中,一个功能强大方法可以让计算机解决感知问题,如图像和语音识别技术越来越多地进入生物学。这些深度学习方法,如深度人工神经网络,使用多个处理层从海量数据中发现模式和结构。每一层都用将前一层从数据中学到的概念作为基础;级别越高,所学的概念越抽象。深度学习不依赖于预先数据处理并自动地提取特征。举一个简单的例子,用于理解形状的深度神经网络在第一层中学习识别简单的边,然后在后续层中识别由那些边组成的更复杂的形状。深度学习的层数并没有硬性规定,但多数专家认为,至少需要两层。
最近的例子展示了深度学习的力量——它可以从基因组DNA序列中找到调控特点:DeepSEA(Nat. Methods 12, 931–934, 2015)将基因组序列作为输入,数据来源是如ENCODE和Epigenomics Roadmap这样的大型数据库,进而预测单核苷酸变异对调节区域——如DNA酶超敏感位点,转录因子结合位点和组蛋白标记——的影响。
Basset(bioRxiv,DOI:10.1101 / 028399,2015)使用类似的深度神经网络预测单核苷酸多态性在染色体上的影响。 DeepBind(Nat. Biotechnol. 33, 831–838, 2015)用深度学习发现RNA和DNA上的蛋白结合位点,并预测突变的影响。深度学习在大数据的背景下是非常有价值的,因为它从大量数据中提取出高层次的信息。它在基因组分析的逐步应用会解决一些最初的挑战,如由于稀少训练数据的相关性而产生的过拟合问题,还有高计算成本问题。学术领域和新兴公司的(如Deep Genomics,2015年7月22日成立)的研究人员将越来越多地应用深度学习来进行基因组分析和精确预测药物。