memcached telnet操作 200318

连接memcach

在这里插入图片描述

终端

telnet ip地址 端口号

默认端口 11211

连接成功

在这里插入图片描述

设置数据 set

在这里插入图片描述

在这里插入图片描述

获取数据 get

在这里插入图片描述

添加数据 add

添加不存在的就成功,添加存在的就失败

在这里插入图片描述

在这里插入图片描述

删除

在这里插入图片描述

在这里插入图片描述

删除所有

在这里插入图片描述

在这里插入图片描述

做加法 incr

在这里插入图片描述

incr 键 值

只对数字类的值才可做加法操作

减法 decr

在这里插入图片描述

状态查看

在这里插入图片描述


stats

在这里插入图片描述

资源下载链接为: https://pan.quark.cn/s/c705392404e8 在本项目中,我们聚焦于“天池-零基础入门数据挖掘-心跳信号分类预测-EDA分析全过程-代码.rar”这一主题。该压缩包涵盖了一次针对心跳信号分类预测的数据挖掘实践,涉及数据的初步探索性分析(Exploratory Data Analysis, EDA)以及相关代码。 “天池”通常指阿里巴巴天池大数据竞赛平台,这是一个提供各类数据竞赛的平台,旨在助力数据科学家和初学者提升技能并解决实际问题。此数据挖掘任务可能是一项竞赛项目,要求参赛者对心跳信号进行分类预测,例如用于诊断心脏疾病或监测健康状况。EDA是数据分析的关键环节,其目的是通过可视化和统计方法深入了解数据的特性、结构及潜在模式。项目中的“task2 EDA.ipynb”很可能是一个 Jupyter Notebook 文件,记录了使用 Python 编程语言(如 Pandas、Matplotlib 和 Seaborn 等库)进行数据探索的过程。EDA 主要包括以下内容:数据加载,利用 Pandas 读取数据集并检查基本信息,如行数、列数、缺失值和数据类型;描述性统计,计算数据的中心趋势(平均值、中位数)、分散度(方差、标准差)和分布形状;可视化,绘制直方图、散点图、箱线图等,直观呈现数据分布和关联性;特征工程,识别并处理异常值,创建新特征或对现有特征进行转换;相关性分析,计算特征之间的相关系数,挖掘潜在关联。 “example.html”可能是一个示例报告或结果展示,总结了 EDA 过程中的发现,以及初步模型结果,涵盖数据清洗、特征选择、模型训练和验证等环节。“datasets”文件夹则包含用于分析的心跳信号数据集,这类数据通常由多个时间序列组成,每个序列代表一个个体在一段时间内的 ECG 记录。分析时需了解 ECG 的生理背景,如波
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值