39. Combination Sum
回溯
因为每个数字可以被无限次使用,所有递归传入的startIndex
仍为i
class Solution:
def __init__(self):
self.res = []
self.path = []
def backtracking(self, candidates, target, curSum, startIndex):
# 终止条件
if curSum >= target:
if curSum == target:
self.res.append(self.path.copy())
return
for i in range(startIndex, len(candidates)):
self.path.append(candidates[i])
curSum += candidates[i]
self.backtracking(candidates, target, curSum, i) # 递归,startIndex仍然为i
curSum -= candidates[i] # 回溯
self.path.pop()
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
self.backtracking(candidates, target, 0, 0)
return self.res
回溯,剪枝优化
先将数组排序,已经知道下一层的sum会大于target,就没有必要进入下一层递归了.
对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历。
class Solution:
def __init__(self):
self.res = []
self.path = []
def backtracking(self, candidates, target, curSum, startIndex):
# 终止条件
if curSum == target:
self.res.append(self.path.copy())
return
for i in range(startIndex, len(candidates)):
# 剪枝
if curSum + candidates[i] > target: break
self.path.append(candidates[i])
curSum += candidates[i]
self.backtracking(candidates, target, curSum, i) # 递归,startIndex仍然为i
curSum -= candidates[i] # 回溯
self.path.pop()
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
candidates.sort() # 先排序
self.backtracking(candidates, target, 0, 0)
return self.res
40. Combination Sum II
回溯
每个candiate只有用一次
必须先对数组排序,同一数层上如果相邻两个元素相等并且前一个使用过,则需要跳过
class Solution:
def __init__(self):
self.path = []
self.res = []
# self.used = []
def backtracking(self, candidates, target, curSum, startIndex, used):
if curSum >= target:
if curSum == target:
self.res.append(self.path.copy())
return
for i in range(startIndex, len(candidates)):
# 去重
# used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
# used[i - 1] == false,说明同一树层candidates[i - 1]使用过
# 要对同一树层使用过的元素进行跳过
if i > 0 and candidates[i] == candidates[i - 1] and used[i - 1] == False:
continue
self.path.append(candidates[i])
curSum += candidates[i]
used[i] = True
self.backtracking(candidates, target, curSum, i + 1, used)
used[i] = False
curSum -= candidates[i]
self.path.pop()
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
used = [False] * len(candidates)
candidates.sort() # 树层去重的话,需要对数组排序!
self.backtracking(candidates, target, 0, 0, used)
return self.res
131. Palindrome Partitioning
比较难,借助图理解
class Solution:
def __init__(self):
self.path = []
self.res = []
def backtracking(self, s_list, startIndex):
# 终止条件
if startIndex >= len(s_list):
self.res.append(self.path.copy())
return
for i in range(startIndex, len(s_list)):
s_cut = s_list[startIndex: i + 1]
if s_cut == s_cut[::-1]: # 是回文串
self.path.append(''.join(s_cut))
else:
continue # 相当于重新走一条新树枝
self.backtracking(s_list, i + 1)
self.path.pop() # 回溯
def partition(self, s: str) -> List[List[str]]:
self.backtracking(list(s), 0)
return self.res