39.组合总和
要点:元素可以重复,那么遍历的startIndex就跟之前的回溯算法不一样了;
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum,
int startIndex) {
if (sum > target) {
return;
}
if (target == sum) {
result.push_back(path);
return;
}
for (int i = startIndex; i < candidates.size(); i++) {
path.push_back(candidates[i]);
sum += candidates[i];
backtracking(candidates, target, sum, i);
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
backtracking(candidates, target, 0, 0);
return result;
}
};
40.组合总和II
要点:如何在同树层标记相等的元素已经使用过,加入了一个used状态数组,这里的使用还需要多理解
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum,
int startIndex, vector<bool>& used) {
if (sum > target) {
return;
}
if (sum == target) {
result.push_back(path);
return;
}
for (int i = startIndex;
i < candidates.size() && sum + candidates[i] <= target; i++) {
if (i > 0 && candidates[i] == candidates[i - 1] &&
used[i - 1] == false) {
continue;
}
path.push_back(candidates[i]);
sum += candidates[i];
used[i] = true;
backtracking(candidates, target, sum, i + 1, used);
used[i] = false;
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(), false);
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0, 0, used);
return result;
}
};
131.分割回文串
要点:双指针判断字符串是否是回文串。
class Solution {
public:
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
vector<vector<string>> result;
vector<string> path;
void backtracking(string s, int startIndex) {
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) {
string sub = s.substr(startIndex, i - startIndex + 1);
path.push_back(sub);
} else {
continue;
}
backtracking(s, i + 1);
path.pop_back();
}
}
vector<vector<string>> partition(string s) {
backtracking(s, 0);
return result;
}
};