深度神经网络(DNN)模型与前向传播算法

本文详细介绍了深度神经网络(DNN)从感知机的演变,探讨了DNN的基本结构,重点阐述了DNN的前向传播算法的数学原理和实现过程,包括线性关系系数和偏倚的定义,以及如何通过矩阵运算简化计算。通过前向传播,DNN能够处理多层非线性模型,为理解和应用DNN打下基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。

1. 从感知机到神经网络

    在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图:

    输出和输入之间学习到一个线性关系,得到中间输出结果:

z=∑i=1mwixi+bz=∑i=1mwixi+b

    接着是一个神经元激活函数:

 

sign(z)={−11z<0z≥0sign(z)={−1z<01z≥0

    从而得到我们想要的输出结果1或者-1。

    这个模型只能用于二元分类,且无法学习比较复杂的非线性模型,因此在工业界无法使用。

    而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值