在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN。本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016)。
1. Dueling DQN的优化点考虑
在前面讲到的DDQN中,我们通过优化目标Q值的计算来优化算法,在Prioritized Replay DQN中,我们通过优化经验回放池按权重采样来优化算法。而在Dueling DQN中,我们尝试通过优化神经网络的结构来优化算法。
具体如何优化网络结构呢?Dueling DQN考虑将Q网络分成两部分,第一部分是仅仅与状态SS有关,与具体要采用的动作AA无关,这部分我们叫做价值函数部分,记做V(S,w,α)V(S,w,α),第二部分同时与状态状态SS和动作AA有关,这部分叫做优势函数(Advantage Function)部分,记为A(S,A,w,β)A(S,A,w,β),那么最终我们的价值函数可以重新表示为:
Q(S,A,w,α,β)=V(S,w
本文详细介绍了Dueling DQN算法,这是一种通过优化神经网络结构来增强DQN性能的方法。Dueling DQN将Q网络分为价值函数和优势函数两部分,以提升对状态价值的评估。文章通过实例展示了Dueling DQN在CartPole-v0游戏中的应用,并提供了代码参考。
订阅专栏 解锁全文
1390

被折叠的 条评论
为什么被折叠?



