机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

本文详细介绍了机器学习中利用定义法进行标量对向量、标量对矩阵以及向量对向量求导的步骤和基本法则。通过实例展示了求导过程,探讨了定义法在复杂求导问题上的局限性。

 在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。

    对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。向量对向量求导,以分子布局为默认布局。如遇到其他文章中的求导结果和本文不同,请先确认使用的求导布局是否一样。另外,由于机器学习中向量或矩阵对标量求导的场景很少见,本系列不会单独讨论这两种求导过程。

1. 用定义法求解标量对向量求导

    标量对向量求导,严格来说是实值函数对向量的求导。即定义实值函数f:Rn→Rf:Rn→R,自变量xx是n维向量,而输出yy是标量。对于一个给定的实值函数,如何求解∂y∂x∂y∂x呢?

    首先我们想到的是基于矩阵求导的定义来做,由于所谓标量对向量的求导,其实就是标量对向量里的每个分量分别求导,最后把求导的结果排列在一起,按一个向量表示而已。那么我们可以将实值函数对向量的每一个分量来求导,最后找到规律,得到求导的结果向量。

    首先我们来看一个简单的例子:y=aTxy=aTx,求解∂aTx∂x∂aTx∂x

    根据定义,我们先对xx的第i个分量进行求导,这是一个标量对标量的求导,如下:

 

∂aTx∂xi=∂∑j=1najx

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值