对梯度下降法的简单理解

梯度下降法是解决无约束优化问题的一种算法,寻找多元函数的最大值或最小值。它利用函数梯度方向作为最陡增减方向,以迭代方式逼近极值点。在求最小值时,沿着梯度的反方向更新位置,迭代直到梯度幅值接近于零。此方法在实践中常用于机器学习和深度学习中的参数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降法又叫最速下降法,英文名为steepest descend method.估计搞研究的人应该经常听见这个算法吧,用来求解表达式最大或者最小值的,属于无约束优化问题。

      首先我们应该清楚,一个多元函数的梯度方向是该函数值增大最陡的方向。具体化到1元函数中时,梯度方向首先是沿着曲线的切线的,然后取切线向上增长的方向为梯度方向,2元或者多元函数中,梯度向量为函数值f对每个变量的导数,该向量的方向就是梯度的方向,当然向量的大小也就是梯度的大小。

      现在假设我们要求函数的最值,采用梯度下降法,如图所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值