我们假定学习器考虑的是定义在实例空间X上的有限的假设空间H,任务是学习某个目标概念c:X→{0,1}。如通常那样,假定给予学习器某训练样例序列〈〈x1,d1,〉…〈xm,dm〉〉,其中xi为X中的某实例,di为xi的目标函数值(即di=c(xi))。为简化讨论,假定实例序列〈x1…xm〉是固定不变的,因此训练数据D可被简单地写作目标函数值序列:D=〈d1…dm〉。
基于贝叶斯理论我们可以设计一个简单的算法输出最大后验假设
我们假定学习器考虑的是定义在实例空间X上的有限的假设空间H,任务是学习某个目标概念c:X→{0,1}。如通常那样,假定给予学习器某训练样例序列〈〈x1,d1,〉…〈xm,dm〉〉,其中xi为X中的某实例,di为xi的目标函数值(即di=c(xi))。为简化讨论,假定实例序列〈x1…xm〉是固定不变的,因此训练数据D可被简单地写作目标函数值序列:D=〈d1…dm〉。
基于贝叶斯理论我们可以设计一个简单的算法输出最大后验假设