贝叶斯学习--极大后验假设学习

本文介绍了基于贝叶斯理论的Brute-ForceMAP学习算法,用于找出假设空间H中最大后验概率的假设。该算法计算每个假设的后验概率,但在大型假设空间中可能不切实际。文章详细探讨了如何确定P(h)和P(D|h)的值,并指出在特定条件下,所有与训练数据一致的假设都将成为MAP假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们假定学习器考虑的是定义在实例空间X上的有限的假设空间H,任务是学习某个目标概念c:X→{0,1}。如通常那样,假定给予学习器某训练样例序列〈〈x1d1,〉…〈xmdm〉〉,其中xiX中的某实例,dixi的目标函数值(即di=c(xi))。为简化讨论,假定实例序列〈x1xm〉是固定不变的,因此训练数据D可被简单地写作目标函数值序列:D=〈d1dm〉。

基于贝叶斯理论我们可以设计一个简单的算法输出最大后验假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值