贝叶斯学习--极大后验概率假设和极大似然假设

本文介绍了机器学习中的贝叶斯学习,重点讲述了极大后验概率(MAP)假设和极大似然(ML)假设。贝叶斯公式是贝叶斯学习的基础,用于计算给定数据后的假设概率。MAP假设考虑了先验概率和似然度,而ML假设仅基于似然度。在实际应用中,贝叶斯理论可以用于处理互斥命题的集合,并且其结果受先验概率影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习中,通常我们感兴趣的是在给定训练数据D时,确定假设空间H中的最佳假设。

所谓最佳假设,一种办法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识条件下的最可能(most probable)假设。

贝叶斯理论提供了计算这种可能性的一种直接的方法。更精确地讲,贝叶斯法则提供了一种计算假设概率的方法,它基于假设的先验概率、给定假设下观察到不同数据的概率、以及观察的数据本身。

要精确地定义贝叶斯理论,先引入一些记号。

1、P(h)来代表还没有训练数据前,假设h拥有的初始概率。P(h)常被称为h的先验概率(prior probability ),它反映了我们所拥有的关于h是一正确假设的机会的背景知识。如果没有这一先验知识,那么可以简单地将每一候选假设赋予相同的先验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值