数据挖掘十大算法--K-均值聚类算法

本文深入探讨了数据挖掘中的K-均值聚类算法,从相异度计算开始,包括标量、二元变量、序数变量等不同类型的变量相异度计算方法。接着详细介绍了聚类问题的定义,以及K-均值算法的基本思想、算法描述和实例分析,展示了算法如何迭代找到最佳聚类。此外,还讨论了算法的优缺点以及改进方法,如k-prototype算法和k-中心点算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、相异度计算 

在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。
      设 ,其中X,Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值