由于某些原因,需要在不联网的windows电脑上安装Anaconda和Tensorflow,先是进行准备工作,将各种需要的安装包下载好,再进行完全离线安装。本次安装是基于Anaconda3-2021.05-Windows-x86_64与tensorflow-2.6.0-cp38-cp38-win_amd64。文后我会放上tensorflow的离线安装需要的支撑包下载地址。Anaconda和Tensorflow的包比较大,可以自行下载,我也会放上地址。
一、准备工作
1.Anaconda的下载:https://www.anaconda.com/download/
2.Tensorflow的下载,可以去清华大学开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/,注意cpu版和gpu版,根据自己需要。
3.Tensorflow的支撑包,这里我列下各支撑包的名称,供参考,也可以直接下载我的支撑包合集(内含protoc、protobuf以及支撑包的支撑包):https://download.youkuaiyun.com/download/wenye23/21710860
支撑包列表
pip install tensorflow-2.6.0-cp38-cp38-win_amd64.whl
Requirement already satisfied: keras~=2.6
Requirement already satisfied: keras-preprocessing~=1.1.2
Requirement already satisfied: gast==0.4.0
Requirement already satisfied: wrapt~=1.12.1
Requirement already satisfied: h5py~=3.1.0
Requirement already satisfied: termcolor~=1.1.0
Requirement already satisfied: grpcio<2.0,>=1.37.0
Requirement already satisfied: astunparse~=1.6.3
Requirement already satisfied: tensorboard~=2.6
Requirement already satisfied: wheel~=0.35
Requirement already satisfied: opt-einsum~=3.3.0
Requirement already satisfied: absl-py~=0.10
Requirement already satisfied: google-pasta~=0.2
Requirement already satisfied: typing-extensions~=3.7.4
Requirement already satisfied: numpy~=1.19.2
Requirement already satisfied: protobuf>=3.9.2
Requirement already satisfied: flatbuffers~=1.12.0
Requirement already satisfied: six~=1.15.0
Requirement already satisfied: tensorflow-estimator~=2.6
Requirement already satisfied: clang~=5.0
Requirement already satisfied: setuptools>=41.0.0
Requirement already satisfied: requests<3,>=2.21.0
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0
Requirement already satisfied: werkzeug>=0.11.15
Requirement already satisfied: google-auth<2,>=1.6.3
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1
Requirement already satisfied: markdown>=2.6.8
Requirement already satisfied: rsa<5,>=3.1.4
Requirement already satisfied: pyasn1-modules>=0.2.1
Requirement already satisfied: cachetools<5.0,>=2.0.0
Requirement already satisfied: requests-oauthlib>=0.7.0
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6
Requirement already satisfied: urllib3<1.27,>=1.21.1
Requirement already satisfied: certifi>=2017.4.17
Requirement already satisfied: idna<3,>=2.5
Requirement already satisfied: chardet<5,>=3.0.2
Requirement already satisfied: oauthlib>=3.0.0
二、安装过程
1.安装Anaconda,这个教程太多了,也比较简单,注意加入环境变量,略过了;
2.进入Anaconda安装路径,到\Lib\site-packages目录下,创建文件夹tensorflow;
3.在创建的tensorflow文件夹中,解压上文下载的支撑包.rar,将支撑包文件夹中的所有文件都放到tensorflow文件夹中;
4.将tensorflow-2.6.0-cp38-cp38-win_amd64.whl文件放到tensorflow文件夹中;
5.解压protoc-3.17.3-win64.zip,将bin中的protoc.exe复制到C:\windows\system32中;
6.直接解压protobuf-python-3.17.3.zip,得到protobuf-3.17.3.文件夹,将第5步中的protoc.exe文件也复制到protobuf-3.17.3\src文件夹中;
7.在cmd命令中更改路径,进入到\Lib\site-packages\tensorflow\protobuf-3.17.3\python路径中,执行python setup.py install;

8.切换安装路径到\Lib\site-packages\tensorflow,接下来先安装tensorflow的各支撑包,可参考上面的支撑包列表,有些包的顺序不一定会对,按提示进行安装,根据文件的不同有两种安装方式如下:
8.1 whl文件直接就利用pip install 文件名,例:

8.2 压缩文件形式的安装,与安装protobuf一致,先解压,然后切换路径,再执行python setup.py install。下面以clang-5.0.tar.gz的安装为例:将clang-5.0.tar.gz解压至当前文件夹(tensorflow)下,在cmd中将路径切换到\Lib\site-packages\tensorflow\clang-5.0,再执行python setup.py install

9.将支撑包与tensorflow包都安装完成后,电脑就成功的装上了tensorflow。可以重新打开cmd,执行
python
import tensorflow
进行验证。
如果是gpu版本,需要安装对应版本的CUDA和cuDNN。
三、提示
因不同人员的电脑不尽相同,可能会出现需要的支撑包不同的情况,下面附上下载支撑包的网址,直接搜,下载对应版本就行。
网址:https://pypi.org/search/


希望有帮助,祝安装顺利。
参考文章:
1.https://blog.youkuaiyun.com/xhbspark/article/details/89929458
2.https://blog.youkuaiyun.com/baidu_33524350/article/details/80523614
3.https://blog.youkuaiyun.com/m0_53794557/article/details/118468277
4.https://blog.youkuaiyun.com/ningmengshuxiawo/article/details/108317381?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_title~default-1.control&spm=1001.2101.3001.4242
本文详述了在不联网的Windows环境下,如何准备并安装Anaconda3-2021.05-Windows-x86_64及tensorflow-2.6.0-cp38-cp38-win_amd64。步骤包括下载Anaconda、Tensorflow及其依赖,将依赖放入特定文件夹,并使用pip和setup.py进行离线安装。
2182





