数据来自这里https://www.jianshu.com/p/5d6d5aac4dbd
从上面参考了网络结构,自己没有调优。batch_size 和 epochs 靠经验(ganjue)
考虑到时间有先后没有打乱数据。也可以去下面拿数据
https://github.com/wenshijie/exercise/tree/master/keliuliang
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 21 18:55:41 2019
@author: lenovo
"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
data = pd.read_csv('international-airline-passengers.csv')
data['time'] = pd.to_datetime(data['time'])
data = data.set_index('time')
# 画出趋势图
def get_picture(data = data):
data['passengers'].plot()
plt.figure(figsize=(100,50))
plt.show()
# 转化序列
def processing(data=data,long=11):
"""
依次转化为11列
"""
data['passengers'] = data['passengers'].astype(float)
sample = len(data) - long + 1
print('得到{}个样本'.format(sample))
data_sample = []
for i in range(sample):
data_s