作为一个码农,不管是在学校还是在工作学习中肯定会接触到数据结构,你要是说我没学过数据结构,嘿嘿!小伙现在去学还来得及,不然以后会后悔的,数据结构中数组、链表、hash表、二叉树、图等,有些很容易理解,有些理解起来却相对跟困难,其中我在学习数据结构的时候,二叉树中红黑树让我理解了好久,通过一段时间的学习做了一下总结,希望对正在读的你有所帮助。
R-B Tree,全称是 Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。通过名字我们可以知道红黑树其实也是一种二叉查找树,但是它有一些自己特殊的特征。
红黑树的特征:
(1)每个节点或者是黑色,或者是红色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL 或 NULL)的叶子节点!]
(4)如果一个节点是红色的,则它的子节点必须是黑色的。
(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
关于它的特性,需要注意的是:
第一,特性(3)中的叶子节点,是只为空(NIL或null)的节点。
第二,特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。
我们要牢记这五点特征,后边关于红黑树的操作目的都是为了满足这五种条件
红黑树的应用:
主要是用它来存储有序的数据,它的时间复杂度是O(lgn),效率非常之高。
例如,Java集合中的TreeSet和TreeMap,C++ STL中的set、map,以及Linux虚拟内存的管理,都是通过红黑树去实现的,HashMap中的链表长度大于8的时候会自动转换成红黑树,也是为了提高查询效率。
下面我们在实现红黑树之前需要了解一下左旋、右旋原理:
红黑树的操作----左旋

LEFT-ROTATE(T, x)
y ← right[x] // 前提:这里假设x的右孩子为y。下面开始正式操作
right[x] ← left[y] // 将 “y的左孩子” 设为 “x的右孩子”,即 将β设为x的右孩子
p[left[y]] ← x // 将 “x” 设为 “y的左孩子的父亲”,即 将β的父亲设为x
p[y] ← p[x] // 将 “x的父亲” 设为 “y的父亲”
if p[x] = nil[T]
then root[T] ← y // 情况1:如果 “x的父亲” 是空节点,则将y设为根节点
else if x = left[p[x]]
then left[p[x]] ← y // 情况2:如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else right[p[x]] ← y // 情况3:(x是它父节点的右孩子) 将y设为“x的父节点的右孩子”
left[y] ← x // 将 “x” 设为 “y的左孩子”
p[x] ← y // 将 “x的父节点” 设为 “y”
红黑树的操作----右旋

RIGHT-ROTATE(T, y)
x ← left[y] // 前提:这里假设y的左孩子为x。下面开始正式操作
left[y] ← right[x] // 将 “x的右孩子” 设为 “y的左孩子”,即 将β设为y的左孩子
p[right[x]] ← y // 将 “y” 设为 “x的右孩子的父亲”,即 将β的父亲设为y
p[x] ← p[y] // 将 “y的父亲” 设为 “x的父亲”
if p[y] = nil[T]
then root[T] ← x // 情况1:如果 “y的父亲” 是空节点,则将x设为根节点
else if y = right[p[y]]
then right[p[y]] ← x // 情况2:如果 y是它父节点的右孩子,则将x设为“y的父节点的左孩子”
else left[p[y]] ← x // 情况3:(y是它父节点的左孩子) 将x设为“y的父节点的左孩子”
right[x] ← y // 将 “y” 设为 “x的右孩子”
p[y] ← x // 将 “y的父节点” 设为 “x”
注:以上参考《算法导论》中红黑树左旋、右旋伪代码
红黑树的操作----添加
将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树。详细描述如下:
1、将红黑树当作一颗二叉查找树,将节点插入。
因为红黑树是一颗二叉查找树,讲节点插入之后,不管是左旋、右旋还是一颗二叉查找树,我们需要做的就是把二叉查找树使其满足以上的五中特点
2、将插入的节点着色为"红色"。
为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈
3、通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
对于"特性(4)",是有可能违背的!
那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。
那么,关于关于插入操作的平衡调整有两种特殊情况,但是都非常好处理
- 如果插入节点的父节点是黑色的,那我们什么都不用做,它仍然满足红黑树定义
- 如果插入的节点是根节点,那我们直接把这个节点染成黑色即可
- 被插入的节点的父节点是红色。
以上两点比较容易处理,第三点情况与特征(5)相冲突,我们可以简化成三个case:
1、如果关注节点是 a,它的叔叔节点 d 是红色
处理方式:
(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。

2、如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 其父节点的右子节点
处理方式:
(01) 关注节点a的父节点b
(02) 围绕新的关注节点b左旋

3、如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点的左子节点
处理方式:
(01) 围绕关注节点 a 的祖父节点 c 右旋
(02) 将关注节点 a 的父节点 b、兄弟节点 c 的颜色互换。

红黑树的操作----删除
红黑树插入操作的平衡调整还不是很难,但是它的删除操作的平衡调整相对就要难多了。不过原理都是类似的,我们依旧只需要根据关注节点与周围节点的排布特点,按照一定的规则去调整就行了。
删除操作的平衡调整分为两步,第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。
一. 针对删除节点初步调整
这里需要注意一下,红黑树的定义中 “ 只包含红色节点和黑色节点 ” ,经过初步调整之后,为了保证满足红黑树定义的最后一条要求,有些节点会被标记成两种颜色, “ 红 - 黑 ” 或者 “ 黑 - 黑 ” 。如果一个节点被标记为了 “ 黑 - 黑 ” ,那在计算黑色节点个数的时候,要算成两个黑色节点。
1、如果要删除的节点是a,它只有一个子节点b
处理方式:
(01) 删除节点a,并且把节点b替换到节点a的位置,这一部分操作跟普通的二叉查找树的删除操作一样;
(02) 节点a只能是黑色,节点b也只能是红色,其他情况均不符合红黑树的定义。这种情况下,我们把节点b改为黑色;

2、如果要删除的节点a有两个非空子节点,并且它的后继节点就是节点a的右子节点c
处理方式:
(01) 如果节点a的后继节点就是右子节点c,那右子节点c肯定没有左子树。我们把节点a删除,并且将节点c替换到节点a的位置。这一部分操作跟普通的二叉查找树的删除操作无异
(02) 然后把节点c的颜色设置为跟节点a相同的颜色;
(03)如果节点c是黑色,为了不违反红黑树的最后一条定义,我们给节点c的右子节点d多加一个黑色,这个时候节点d就成了“红-黑”或者“黑-黑”;
(04)这个时候,关注节点变成了节点d,第二步的调整操作就会针对关注节点来做。

3、如果要删除的是节点a,它有两个非空子节点,并且节点a的后继节点不是右子节点
处理方式:
(01) 找到后继节点d,并将它删除,删除后继节点d的过程参照CASE 1;
(02) 将节点a替换成后继节点d;
(03)把节点d的颜色设置为跟节点a相同的颜色;
(04)如果节点d是黑色,为了不违反红黑树的最后一条定义,我们给节点d的右子节点c多加一个黑色,这个时候节点c就成了“红-黑”或者“黑-黑”;
(05)这个时候,关注节点变成了节点c,第二步的调整操作就会针对关注节点来做。

二、针对关注节点进行二次调整
经过初步调整之后,关注节点变成了 “ 红 - 黑 ” 或者 “ 黑 - 黑 ” 节点。针对这个关注节点,我们再分四种情况来进行二次调整。二次调整是为了让红黑树中不存在相邻的红色节点。
1、如果关注节点是a,它的兄弟节点c是红色的
处理方式:
(01) 围绕关注节点a的父节点b左旋;
(02)关注节点a的父节点b和祖父节点c交换颜色;
(03)关注节点不变;
(04)继续从四种情况中选择适合的规则来调整。

2、如果关注节点是a,它的兄弟节点c是黑色的,并且节点c的左右子节点d、e都是黑色的
处理方式:
(01)将关注节点a的兄弟节点c的颜色变成红色;
(02)从关注节点a中去掉一个黑色,这个时候节点a就是单纯的红色或者黑色;
(03)给关注节点a的父节点b添加一个黑色,这个时候节点b就变成了“红-黑”或者“黑-黑”;
(04)关注节点从a变成其父节点b;
(05)继续从四种情况中选择符合的规则来调整。

3、如果关注节点是a,它的兄弟节点c是黑色,c的左子节点d是红色,c的右子节点e是黑色
处理方式:
(01) 围绕关注节点a的兄弟节点c右旋;
(02)节点c和节点d交换颜色;
(03)关注节点不变;
(04)跳转到CASE 4,继续调整。

4、如果关注节点a的兄弟节点c是黑色的,并且c的右子节点是红色的
处理方式:
(01) 围绕关注节点a的父节点b左旋;
(02)将关注节点a的兄弟节点c的颜色,跟关注节点a的父节点b设置成相同的颜色;
(03)将关注节点a的父节点b的颜色设置为黑色;
(04)从关注节点a中去掉一个黑色,节点a就变成了单纯的红色或者黑色;
(05)将关注节点a的叔叔节点e设置为黑色;
(06)调整结束

OK!至此,红黑树的理论知识差不多讲完了。下面是红黑树的实现代码!
1、基本定义
/**
* Java 语言: 红黑树
*
* @author skywang
* @date 2013/11/07
*/
public class RBTree<T extends Comparable<T>> {
private RBTNode<T> mRoot; // 根结点
private static final boolean RED = false;
private static final boolean BLACK = true;
public class RBTNode<T extends Comparable<T>> {
boolean color; // 颜色
T key; // 关键字(键值)
RBTNode<T> left; // 左孩子
RBTNode<T> right; // 右孩子
RBTNode<T> parent; // 父结点
public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
this.key = key;
this.color = color;
this.parent = parent;
this.left = left;
this.right = right;
}
public T getKey() {
return key;
}
public String toString() {
return ""+key+(this.color==RED?"(R)":"B");
}
}
public RBTree() {
mRoot=null;
}
private RBTNode<T> parentOf(RBTNode<T> node) {
return node!=null ? node.parent : null;
}
private boolean colorOf(RBTNode<T> node) {
return node!=null ? node.color : BLACK;
}
private boolean isRed(RBTNode<T> node) {
return ((node!=null)&&(node.color==RED)) ? true : false;
}
private boolean isBlack(RBTNode<T> node) {
return !isRed(node);
}
private void setBlack(RBTNode<T> node) {
if (node!=null)
node.color = BLACK;
}
private void setRed(RBTNode<T> node) {
if (node!=null)
node.color = RED;
}
private void setParent(RBTNode<T> node, RBTNode<T> parent) {
if (node!=null)
node.parent = parent;
}
private void setColor(RBTNode<T> node, boolean color) {
if (node!=null)
node.color = color;
}
/*
* 前序遍历"红黑树"
*/
private void preOrder(RBTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}
public void preOrder() {
preOrder(mRoot);
}
/*
* 中序遍历"红黑树"
*/
private void inOrder(RBTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}
public void inOrder() {
inOrder(mRoot);
}
/*
* 后序遍历"红黑树"
*/
private void postOrder(RBTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}
public void postOrder() {
postOrder(mRoot);
}
/*
* (递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode<T> search(RBTNode<T> x, T key) {
if (x==null)
return x;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}
public RBTNode<T> search(T key) {
return search(mRoot, key);
}
/*
* (非递归实现)查找"红黑树x"中键值为key的节点
*/
private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}
return x;
}
public RBTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}
/*
* 查找最小结点:返回tree为根结点的红黑树的最小结点。
*/
private RBTNode<T> minimum(RBTNode<T> tree) {
if (tree == null)
return null;
while(tree.left != null)
tree = tree.left;
return tree;
}
public T minimum() {
RBTNode<T> p = minimum(mRoot);
if (p != null)
return p.key;
return null;
}
/*
* 查找最大结点:返回tree为根结点的红黑树的最大结点。
*/
private RBTNode<T> maximum(RBTNode<T> tree) {
if (tree == null)
return null;
while(tree.right != null)
tree = tree.right;
return tree;
}
public T maximum() {
RBTNode<T> p = maximum(mRoot);
if (p != null)
return p.key;
return null;
}
/*
* 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
*/
public RBTNode<T> successor(RBTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right);
// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
RBTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
}
return y;
}
/*
* 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
*/
public RBTNode<T> predecessor(RBTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left);
// 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
RBTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
}
return y;
}
/*
* 销毁红黑树
*/
private void destroy(RBTNode<T> tree) {
if (tree==null)
return ;
if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right);
tree=null;
}
public void clear() {
destroy(mRoot);
mRoot = null;
}
/*
* 打印"红黑树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(RBTNode<T> tree, T key, int direction) {
if(tree != null) {
if(direction==0) // tree是根节点
System.out.printf("%2d(B) is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left");
print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
}
public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
}
2、左旋
/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)-. / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
private void leftRotate(RBTNode<T> x) {
// 设置x的右孩子为y
RBTNode<T> y = x.right;
// 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x.right = y.left;
if (y.left != null)
y.left.parent = x;
// 将 “x的父亲” 设为 “y的父亲”
y.parent = x.parent;
if (x.parent == null) {
this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
} else {
if (x.parent.left == x)
x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
}
// 将 “x” 设为 “y的左孩子”
y.left = x;
// 将 “x的父节点” 设为 “y”
x.parent = y;
}
3、右旋
/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)-. / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
private void rightRotate(RBTNode<T> y) {
// 设置x是当前节点的左孩子。
RBTNode<T> x = y.left;
// 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y.left = x.right;
if (x.right != null)
x.right.parent = y;
// 将 “y的父亲” 设为 “x的父亲”
x.parent = y.parent;
if (y.parent == null) {
this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
} else {
if (y == y.parent.right)
y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
}
// 将 “y” 设为 “x的右孩子”
x.right = y;
// 将 “y的父节点” 设为 “x”
y.parent = x;
}
4、添加
/*
* 将结点插入到红黑树中
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的node
*/
private void insert(RBTNode<T> node) {
int cmp;
RBTNode<T> y = null;
RBTNode<T> x = this.mRoot;
// 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != null) {
y = x;
cmp = node.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
}
node.parent = y;
if (y!=null) {
cmp = node.key.compareTo(y.key);
if (cmp < 0)
y.left = node;
else
y.right = node;
} else {
this.mRoot = node;
}
// 2. 设置节点的颜色为红色
node.color = RED;
// 3. 将它重新修正为一颗二叉查找树
insertFixUp(node);
}
/*
* 新建结点(key),并将其插入到红黑树中
*
* 参数说明:
* key 插入结点的键值
*/
public void insert(T key) {
RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null);
// 如果新建结点失败,则返回。
if (node != null)
insert(node);
}
/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的z
*/
private void insertFixUp(RBTNode<T> node) {
RBTNode<T> parent, gparent;
// 若“父节点存在,并且父节点的颜色是红色”
while (((parent = parentOf(node))!=null) && isRed(parent)) {
gparent = parentOf(parent);
//若“父节点”是“祖父节点的左孩子”
if (parent == gparent.left) {
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.right;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
}
// Case 2条件:叔叔是黑色,且当前节点是右孩子
if (parent.right == node) {
RBTNode<T> tmp;
leftRotate(parent);
tmp = parent;
parent = node;
node = tmp;
}
// Case 3条件:叔叔是黑色,且当前节点是左孩子。
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
} else { //若“z的父节点”是“z的祖父节点的右孩子”
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.left;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
}
// Case 2条件:叔叔是黑色,且当前节点是左孩子
if (parent.left == node) {
RBTNode<T> tmp;
rightRotate(parent);
tmp = parent;
parent = node;
node = tmp;
}
// Case 3条件:叔叔是黑色,且当前节点是右孩子。
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
}
}
// 将根节点设为黑色
setBlack(this.mRoot);
}
5、删除
/*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* node 删除的结点
*/
private void remove(RBTNode<T> node) {
RBTNode<T> child, parent;
boolean color;
// 被删除节点的"左右孩子都不为空"的情况。
if ( (node.left!=null) && (node.right!=null) ) {
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode<T> replace = node;
// 获取后继节点
replace = replace.right;
while (replace.left != null)
replace = replace.left;
// "node节点"不是根节点(只有根节点不存在父节点)
if (parentOf(node)!=null) {
if (parentOf(node).left == node)
parentOf(node).left = replace;
else
parentOf(node).right = replace;
} else {
// "node节点"是根节点,更新根节点。
this.mRoot = replace;
}
// child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace.right;
parent = parentOf(replace);
// 保存"取代节点"的颜色
color = colorOf(replace);
// "被删除节点"是"它的后继节点的父节点"
if (parent == node) {
parent = replace;
} else {
// child不为空
if (child!=null)
setParent(child, parent);
parent.left = child;
replace.right = node.right;
setParent(node.right, replace);
}
replace.parent = node.parent;
replace.color = node.color;
replace.left = node.left;
node.left.parent = replace;
if (color == BLACK)
removeFixUp(child, parent);
node = null;
return ;
}
if (node.left !=null) {
child = node.left;
} else {
child = node.right;
}
parent = node.parent;
// 保存"取代节点"的颜色
color = node.color;
if (child!=null)
child.parent = parent;
// "node节点"不是根节点
if (parent!=null) {
if (parent.left == node)
parent.left = child;
else
parent.right = child;
} else {
this.mRoot = child;
}
if (color == BLACK)
removeFixUp(child, parent);
node = null;
}
/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 红黑树的根结点
* z 删除的结点
*/
public void remove(T key) {
RBTNode<T> node;
if ((node = search(mRoot, key)) != null)
remove(node);
}
/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 待修正的节点
*/
private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
RBTNode<T> other;
while ((node==null || isBlack(node)) && (node != this.mRoot)) {
if (parent.left == node) {
other = parent.right;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
leftRotate(parent);
other = parent.right;
}
if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else {
if (other.right==null || isBlack(other.right)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.left);
setRed(other);
rightRotate(other);
other = parent.right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.right);
leftRotate(parent);
node = this.mRoot;
break;
}
} else {
other = parent.left;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
rightRotate(parent);
other = parent.left;
}
if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else {
if (other.left==null || isBlack(other.left)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.right);
setRed(other);
leftRotate(other);
other = parent.left;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.left);
rightRotate(parent);
node = this.mRoot;
break;
}
}
}
if (node!=null)
setBlack(node);
}
6、测试
/**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/
public class RBTreeTest {
private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
private static final boolean mDebugInsert = false; // "插入"动作的检测开关(false,关闭;true,打开)
private static final boolean mDebugDelete = false; // "删除"动作的检测开关(false,关闭;true,打开)
public static void main(String[] args) {
int i, ilen = a.length;
RBTree<Integer> tree=new RBTree<Integer>();
System.out.printf("== 原始数据: ");
for(i=0; i<ilen; i++)
System.out.printf("%d ", a[i]);
System.out.printf("\n");
for(i=0; i<ilen; i++) {
tree.insert(a[i]);
// 设置mDebugInsert=true,测试"添加函数"
if (mDebugInsert) {
System.out.printf("== 添加节点: %d\n", a[i]);
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n");
}
}
System.out.printf("== 前序遍历: ");
tree.preOrder();
System.out.printf("\n== 中序遍历: ");
tree.inOrder();
System.out.printf("\n== 后序遍历: ");
tree.postOrder();
System.out.printf("\n");
System.out.printf("== 最小值: %s\n", tree.minimum());
System.out.printf("== 最大值: %s\n", tree.maximum());
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n");
// 设置mDebugDelete=true,测试"删除函数"
if (mDebugDelete) {
for(i=0; i<ilen; i++)
{
tree.remove(a[i]);
System.out.printf("== 删除节点: %d\n", a[i]);
System.out.printf("== 树的详细信息: \n");
tree.print();
System.out.printf("\n");
}
}
// 销毁二叉树
tree.clear();
}
}
参考:http://www.cnblogs.com/skywang12345/p/3624343.html
极客时间:王争 的数据结构与算法之美
本文深入讲解红黑树的特性和应用,包括红黑树的基本概念、左旋、右旋、插入、删除等操作原理,以及Java实现代码。红黑树是一种自平衡二叉查找树,用于高效存储有序数据。
177万+

被折叠的 条评论
为什么被折叠?



