递归
递归分析
递归问题可分为以下三个步骤分析:
1、递归函数功能
2、递归终止条件
3、递归关系式
//n!
//1、递归函数功能
int f(int n)
{
//递归终止条件
if(n==1)
return 1;
//关系式f(n)=n*f(n-1)
return n*f(n-1);
}
//一次可以跳上1级台阶,也可以跳上2级。求该跳上一个n级的台阶总共有多少种跳法。
int f(int n)
{
//递归终止条件
//这里如果写成n==1返回1,则当n==2的时候,会调用到f(0),而f(0)又会调用到f(-1)和f(-2)从而变成死循环
if(n<=2)
return n;
//关系式f(n)=f(n-1)+f(n-2)
//第一次选择跳一个台阶,后面有f(n-1)种跳法,选择跳2个台阶,后面有f(n-2)种跳法
return f(n-1)+f(n-2);
}
递归问题能找到递归关系式的,是否都能用动态规划的思想去解决?
目前没遇到无法用动态规划去改写的问题。通常递归问题的时间复杂度都比较高。
递归的时间复杂度
master公式的使用:
T(n)=a*T(n/b)+O(n^d)
-
log(b,a)>d->复杂度为O(n^log(b,a)) -
log(b,a)=d->复杂度为O(n^d*logn) -
log(b,a)>d->复杂度为O(n^d)
推导如下:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uSQxFJik-1633420429823)(C:\Users\win\AppData\Roaming\Typora\typora-user-images\image-20211005153008134.png)]](https://i-blog.csdnimg.cn/blog_migrate/08cd4da74e1536877804d7e450391a3d.png)
n级台阶的问题时间复杂度分析
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G8Pn6skP-1633420429826)(C:\Users\win\AppData\Roaming\Typora\typora-user-images\image-20211005155053907.png)]](https://i-blog.csdnimg.cn/blog_migrate/2003d301043914fcdd46adf6bcc53cbd.png)
该时间复杂度是一个指数复杂度。很多时候递归的时间复杂度都很高,所以可以用动态规划来改写。
int climbStairs(int n) {
if(n<=2)
return n;
int m=0,p=1,k=2;
for(int i=3;i<=n;i++)
{
m=p;
p=k;
k=m+p;
}
return k;
}
//时间复杂度为O(n)
1615

被折叠的 条评论
为什么被折叠?



