```
void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
{
double angle = atan2((double)p.y - q.y, (double)p.x - q.x); // 角度(弧度)
double hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
// 将箭头长度放大scale倍
q.x = (int)(p.x - scale * hypotenuse * cos(angle));
q.y = (int)(p.y - scale * hypotenuse * sin(angle));
line(img, p, q, colour, 1, CV_AA);
// 创建箭头箭头钩
p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4));
line(img, p, q, colour, 1, CV_AA);
p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4));
line(img, p, q, colour, 1, CV_AA);
}
double getOrientation(const vector<Point> &pts, Mat &img){
// 构造PCA分析使用的缓冲区
int sz = static_cast<int>(pts.size());
Mat data_pts = Mat(sz, 2, CV_64F);
for (int i = 0; i < data_pts.rows; i++) {
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
}
// 执行PCA分析
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
// 存储对象的中心点
Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
// 存储特征值和特征向量
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
for (int i = 0; i < 2; i++) {
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(i);
}
// 绘制主成分
circle(img, cntr, 3, Scalar(255, 0, 255), 2);
Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // 方向(弧度)
return angle;
}
void pca2() {
Mat src = imread("E:\\1306.jpg"); //加载灰度图
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);//转换为灰度图
Mat kernel_rect = getStructuringElement(MORPH_RECT, Size(3, 5)); // 3*5的矩形
morphologyEx(gray, gray, MORPH_OPEN, kernel_rect, Point(-1, -1), 2); //开运算2次
Mat bw;
threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);// 将图像转换为二值图像
// 查找阈值图像中的所有轮廓
vector<vector<Point> > contours;
findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE);
for (size_t i = 0; i < contours.size(); i++){
double area = contourArea(contours[i]);// 计算每个轮廓的面积
if (area < 1e2 || 1e5 < area) continue;// 忽略过小或过大的轮廓
drawContours(src, contours, static_cast<int>(i), Scalar(0, 255, 0), 2);// 绘制每个轮廓,仅用于可视化
getOrientation(contours[i], src);// 查找每个形状的方向
}
imshow("output", src);
imwrite("E:\\output.JPG", src);
}```详细解释一下代码