10297 : Podzielno 数论

本文探讨了一个数能被B-1整除的条件,即该数在B进制下的每一位数字之和能被B-1整除。通过数学证明,解释了这一现象背后的原理,并提供了一个算法实现,用于解决与该特性相关的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结论: 一个数能被B-1整除当且仅当这个数在B进制下的每一位的和能被B-1整除。 
证明: 
当一个数的某一位+1时,若进位,则这一位要减去B-1,下一位要+1,则总的贡献是+1. 
当一个数的某一位-1时,若退位,则这一位要加上B-1,下一位要-1,则总的贡献是-1. 
于是当一个数加上B-1时,它在B进制下每一位的总和对B-1取模的值是不变的。

a*Bk≡a (mod (B-1) )

 

于是只要使所有位之和是(B-1)的倍数就可以了。

又a[i]>=1,只需删去sum%(B-1)就可以了。

询问用二分。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=1000005;

int B,q;
LL a[N];

LL read()
{
    LL x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int main()
{
    B = read();q = read();
    int s = 0;
    for (int i = 0; i < B; i++) {a[i]=read(); s=(s+(LL)i*a[i]%(B-1))%(B-1);}
    if (s) a[s]--;
    for (int i = 1; i < B; i++) a[i] += a[i-1];
    while (q--)
    {
        LL x = read() + 1;
        int l = 0,r = B-1;
        while (l <= r)
        {
            int mid = (l + r) / 2;
            if (a[mid] >= x) r = mid - 1;
            else l = mid + 1;
        }
        if (r == B - 1) cout << "-1\n";
        else printf("%d\n", r + 1);
    }
    return 0;
}

先开始超时了,然后看了 https://blog.youkuaiyun.com/qq_33229466/article/details/75007075这位大佬的,用了read();

可能这就是传说中的按位读取吧。。。。

每次打完训练赛就自闭,比每天刷USACO更抑郁。失去梦想变成咸鱼。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值