题目链接
Educational Codeforces Round 88 E. Modular Stability
思路
对于任意的非负整数 x x x,我们要满足 x % a % b = x % b % a x \% a \% b = x \% b \% a x%a%b=x%b%a。因为 a < b a < b a<b,所以只有 b b b为 a a a的倍数时才满足条件。
因此,我们可以枚举最小的 a a a,求出值域范围内有多少个它的倍数,然后使用组合数学计算答案即可。
代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int N = 5e5 + 5, M = 1e6 + 5;
const int mod = 998244353;
const int inf = 0x3f3f3f3f3f3f3f3f;
int n, k;
int fac[N], infac[N];
int qmi(int a, int b, int c)
{
int res = 1;
while (b)
{
if (b & 1)
res = res * a % c;
b >>= 1;
a = a * a % c;
}
return res;
}
void init()
{
fac[0] = infac[0] = 1;
for (int i = 1; i <= n; i++)
{
fac[i] = fac[i - 1] * i % mod;
infac[i] = infac[i - 1] * qmi(i, mod - 2, mod) % mod;
}
}
int C(int a, int b)
{
return fac[a] * infac[b] % mod * infac[a - b] % mod;
}
int MOD(int x)
{
return (x % mod + mod) % mod;
}
void solve()
{
cin >> n >> k;
init();
if (n < k)
{
cout << 0 << endl;
}
else
{
int ans = 0;
for (int i = 1; i <= n - k + 1; i++) //假设最小的a[i]为i
{
int num = n / i - 1;
if (num < k - 1) break;
ans = (ans + C(num, k - 1)) % mod;
}
cout << MOD(ans) << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int test = 1;
// cin >> test;
for (int i = 1; i <= test; i++)
{
solve();
}
return 0;
}