创作过程中难免有不足,若您发现本文内容有误,恳请不吝赐教。
提示:以下是本篇文章正文内容,下面案例可供参考。
一、AVL树
1.AVL树的概念
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(logN),搜索时间复杂度O(logN)
2.AVL树节点的定义
//AVLTree.h"
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* left;
AVLTreeNode<K, V>* right;
AVLTreeNode<K, V>* _parent;
pair<K,V> _kv;
int bf; //平衡因子
AVLTreeNode(const pair<K, V>& kv)
:left(nullptr)
,right(nullptr)
,_parent(nullptr)
,_kv(kv)
,bf(0)
{}
};
3.AVL树的插入
AVL
树就是在二叉搜索树的基础上引入了平衡因子,因此
AVL
树也可以看成是二叉搜索树。那么
AVL
树的插入过程可以分为两步:
①.
按照二叉搜索树的方式插入新节点
②. 调整节点的平衡因子


//AVLTree.h"
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->right;
}
else
return false;
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->right = cur;
cur->_parent = parent;
}
else
{
parent->left = cur;
cur->_parent = parent;
}
while (parent)
{
if (cur == parent->left)
parent->bf--;
else if (cur == parent->right)
parent->bf++;
if (parent->bf == 0)
break;
else if (parent->bf == 1 || parent->bf == -1)
{
cur = parent;
parent = parent->_parent;
}
else if (parent->bf == 2 || parent->bf == -2)
{
//下面进行旋转
//代码的解析在后面
if (parent->bf == 2 && cur->bf == 1)
RotateL(parent); //左单旋
else if (parent->bf == -2 && cur->bf == -1)
RotateR(parent); //右单旋
else if (parent->bf == 2 && cur->bf == -1)
RotateRL(parent); //先右单旋再左单旋
else if (parent->bf == -2 && cur->bf == 1)
RotateLR(parent); //先左单旋再右单旋
// 1、旋转让这颗子树平衡了
// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,
// 所以对上一层没有影响,不用继续更新
break;
}
else
assert(false);
}
return true;
}
private:
Node* _root = nullptr;
};
4.AVL树的旋转
①新节点插入较高右子树的右侧---右右:左单旋
void RotateL(Node* parent) //左单旋
{
Node* subR = parent->right;
Node* subRL = subR->left;
parent->right = subRL;
if (subRL) //subRL有可能为空
subRL->_parent = parent;
Node* parentParent = parent->_parent; //记录parent的父亲
subR->left = parent;
parent->_parent = subR;
if (_root == parent) //parent原来是根节点
{
_root = subR;
subR->_parent = nullptr;
}
else //parent原来不是根节点
{
if (parentParent->left == parent) //parent原来在父节点的左子树
parentParent->left = subR;
else //parent原来在父节点的右子树
parentParent->right = subR;
subR->_parent = parentParent;
}
parent->bf = subR->bf = 0;
}
②新节点插入较高左子树的左侧---左左:右单旋(和左单旋类似)
void RotateR(Node* parent) //右单旋
{
Node* subL = parent->left;
Node* subLR = subL->right;
parent->left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->right = parent;
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parentParent->left == parent)
parentParent->left = subL;
else
parentParent->right = subL;
subL->_parent = parentParent;
}
subL->bf = parent->bf = 0;
}
③新节点插入较高右子树的左侧---右左:先右单旋再左单旋
void RotateRL(Node* parent) //先右单旋再左单旋
{
Node* subR = parent->right;
Node* subRL = subR->left;
int bf = subRL->bf;
RotateR(parent->right);
RotateL(parent);
if (bf == 0)
// subRL自己就是新增
parent->bf = subR->bf = subRL->bf = 0;
else if (bf == 1)
{
// subRL的右子树新增
parent->bf = -1;
subRL->bf = 0;
subR->bf = 0;
}
else if (bf == -1)
{
// subRL的左子树新增
parent->bf = 0;
subRL->bf = 0;
subR->bf = 1;
}
else
assert(false);
}
④新节点插入较高左子树的右侧---左右:先左单旋再右单旋(与情况③类似)
void RotateLR(Node* parent) //先左单旋再右单旋
{
Node* subL = parent->left;
Node* subLR = subL->right;
int bf = subLR->bf;
RotateL(parent->left);
RotateR(parent);
if (bf == 0)
// subRL自己就是新增
parent->bf = subL->bf = subLR->bf = 0;
else if (bf == 1)
{
// subLR的右子树新增
parent->bf = 0;
subLR->bf = 0;
subL->bf = -1;
}
else if (bf == -1)
{
// subLR的左子树新增
parent->bf = 1;
subLR->bf = 0;
subL->bf = 0;
}
else
assert(false);
}
5.AVL树的验证
①验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。
//中序遍历代码
void InOrder()
{
_InOrder(_root);
cout << endl;
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->left);
cout << root->_kv.first << " ";
_InOrder(root->right);
}
②验证其为平衡树
Ⅰ.每个节点子树高度差的绝对值不超过
1(
注意节点中如果没有平衡因子
)
Ⅱ.节点的平衡因子是否计算正确
//计算子树高度
int _Height(Node* root)
{
if (root == nullptr)
return false;
int leftHeight = _Height(root->left);
int rightHeight = _Height(root->right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool IsBalance()
{
return _IsBalance(_root);
}
bool _IsBalance(Node* root)
{
if (root == nullptr)
return true;
int leftHeight = _Height(root->left);
int rightHeight = _Height(root->right);
if (rightHeight - leftHeight != root->bf)
{
cout << root->_kv.first << "平衡因子异常" << endl;
return false;
}
return abs(rightHeight - leftHeight) < 2
&& _IsBalance(root->left)
&& _IsBalance(root->right);
}
③验证结果
//Test.cpp
#include<iostream>
#include<vector>
using namespace std;
#include"AVLTree.h"
int main()
{
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
AVLTree<int, int> t;
for (auto e : a)
t.Insert(make_pair(e, e));
t.InOrder();
cout << t.IsBalance() << endl;
return 0;
}
总结
以上就是今天要讲的内容,本文仅仅简单介绍了c++的基础知识。