# CART算法既可以用于分类,也可以用于回归
# CART算法是基于基尼系数进行比较的
# 且CART算法不仅包括决策树的生成算法,还包括决策树剪枝算法
# CART分类算法:
# 给定训练集D和特征集A,对于每个特征a及其所有取值ai,根据a=ai将数据集划分为D1,D2两个部分,然后计算基尼指数
# 取基尼指数最小的特征及其对应的划分点作为最优特征和最优划分点,据此将当前节点划分为两个子节点,将训练集根据特征分配搭配到两个子节点中
# 对两个子节点递归调用上两步,直至停止
# CART回归算法:
# 求解最优特征j和最优划分点s,遍历训练集所有特征,对固定划分特征扫描划分点
# 根据最优(j,s)来划分特征空间区域并决定相应的输出权重
# 对划分的两个子区域递归调用上两步,直至满足停止条件
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
from utils import feature_split, calculate_gini
### 定义树结点
class TreeNode():
def __init__(self, feature_i=None, threshold=None,
leaf_value=None, left_branch=None, right_branch=None):
# 特征索引
self.feature_i = feature_i
# 特征划分阈值
self.threshold = threshold
# 叶子节点取值
self.leaf_value = leaf_value
# 左子树
self.left_branch = left_branch
# 右子树
self.right_branch = right_branch
### 定义二叉决策树
class BinaryDecisionTree(object):
### 决策树初始参数
def __init__(self, min_samples_split=2, min_gini_impurity=999,
max_depth=float("inf"), loss=None):
# 根结点
self.root = None
# 节点最小分裂样本数
self.min_samples_split = min_samples_split
# 节点初始化基尼不纯度
self.mini_gini_impurity = min_gini_impurity
# 树最大深度
self.max_depth = max_depth
# 基尼不纯度计算函数
self.gini_impurity_calculation = None
# 叶子节点值预测函数
self._leaf_value_calculation = None
# 损失函数
self.loss = loss
### 决策树拟合函数
def fit(self, X, y, loss=None):
# 递归构建决策树
self.root = self._build_tree(X, y)
self.loss=None
### 决策树构建函数
def _build_tree(self, X, y, current_depth=0):
# 初始化最小基尼不纯度
init_gini_impurity = 999
# 初始化最佳特征索引和阈值
best_criteria = None
# 初始化数据子集
best_sets = None
# 合并输入和标签
Xy = np.concatenate((X, y), axis=1)
# 获取样本数和特征数
n_samples, n_features = X.shape
# 设定决策树构建条件
# 训练样本数量大于节点最小分裂样本数且当前树深度小于最大深度
if n_samples >= self.min_samples_split and current_depth <= self.max_depth:
# 遍历计算每个特征的基尼不纯度
for feature_i in range(n_features):
# 获取第i特征的所有取值
feature_values = np.expand_dims(X[:, feature_i], axis=1)
# 获取第i个特征的唯一取值
unique_values = np.unique(feature_values)
# 遍历取值并寻找最佳特征分裂阈值
for threshold in unique_values:
# 特征节点二叉分裂
Xy1, Xy2 = feature_split(Xy, feature_i, threshold)
# 如果分裂后的子集大小都不为0
if len(Xy1) > 0 and len(Xy2) > 0:
# 获取两个子集的标签值
y1 = Xy1[:, n_features:]
y2 = Xy2[:, n_features:]
# 计算基尼不纯度
impurity = self.impurity_calculation(y, y1, y2)
# 获取最小基尼不纯度
# 最佳特征索引和分裂阈值
if impurity < init_gini_impurity:
init_gini_impurity = impurity
best_criteria = {"feature_i": feature_i, "threshold": threshold}
best_sets = {
"leftX": Xy1[:, :n_features],
"lefty": Xy1[:, n_features:],
"rightX": Xy2[:, :n_features],
"righty": Xy2[:, n_features:]
}
# 如果计算的最小不纯度小于设定的最小不纯度
if init_gini_impurity < self.mini_gini_impurity:
# 分别构建左右子树
left_branch = self._build_tree(best_sets["leftX"], best_sets["lefty"], current_depth + 1)
right_branch = self._build_tree(best_sets["rightX"], best_sets["righty"], current_depth + 1)
return TreeNode(feature_i=best_criteria["feature_i"], threshold=best_criteria[
"threshold"], left_branch=left_branch, right_branch=right_branch)
# 计算叶子计算取值
leaf_value = self._leaf_value_calculation(y)
return TreeNode(leaf_value=leaf_value)
### 定义二叉树值预测函数
def predict_value(self, x, tree=None):
if tree is None:
tree = self.root
# 如果叶子节点已有值,则直接返回已有值
if tree.leaf_value is not None:
return tree.leaf_value
# 选择特征并获取特征值
feature_value = x[tree.feature_i]
# 判断落入左子树还是右子树
branch = tree.right_branch
if isinstance(feature_value, int) or isinstance(feature_value, float):
if feature_value >= tree.threshold:
branch = tree.left_branch
elif feature_value == tree.threshold:
branch = tree.left_branch
# 测试子集
return self.predict_value(x, branch)
### 数据集预测函数
def predict(self, X):
y_pred = [self.predict_value(sample) for sample in X]
return y_pred
### CART回归树
class RegressionTree(BinaryDecisionTree):
def _calculate_variance_reduction(self, y, y1, y2):
var_tot = np.var(y, axis=0)
var_y1 = np.var(y1, axis=0)
var_y2 = np.var(y2, axis=0)
frac_1 = len(y1) / len(y)
frac_2 = len(y2) / len(y)
# 计算方差减少量
variance_reduction = var_tot - (frac_1 * var_y1 + frac_2 * var_y2)
return sum(variance_reduction)
# 节点值取平均
def _mean_of_y(self, y):
value = np.mean(y, axis=0)
return value if len(value) > 1 else value[0]
def fit(self, X, y):
self.impurity_calculation = self._calculate_variance_reduction
self._leaf_value_calculation = self._mean_of_y
super(RegressionTree, self).fit(X, y)
from sklearn import datasets
data = datasets.load_iris()
X, y = data.data, data.target
# 注意!是否要对y进行reshape取决于numpy版本
y = y.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = ClassificationTree()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(accuracy_score(y_test, y_pred))
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(accuracy_score(y_test, y_pred))
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
y = y.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
model = RegressionTree()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)