以yolov8添加SimAM注意力机制为例
代码如下
- 导入(首先在nn.modules.conv.py端导入这部分代码)
import torch
import torch.nn as nn
import torch.nn.functional as F
class SimAM(nn.Module):
def __init__(self, e_lambda=1e-4):
super(SimAM, self).__init__()
self.e_lambda = e_lambda
def forward(self, x):
# Input x shape: (batch_size, channels, height, width)
b, c, h, w = x.size()
# Calculate the mean of the input
x_mean = x.mean(dim=(2, 3), keepdim=True)
# Calculate the spatial energy
energy = (x - x_mean).pow(2).sum(dim=(2, 3), keepdim=True)
# Calculate the attention weights
attention = (x - x_mean) / (energy + self.e_lambda)
return x * attention
如下图导入代码
2、定义(也称register)
①在nn.modules.init.py文件里进行注册
②在nn.tasks.py文件里进入一个注册(修改三个部分)
elif m in {SimAM}:
c2 = ch[f[1]]
args = [c2, *args]
3、接下来就是修改yaml配置文件了(自己根据需求来调整SimAM的位置)
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, SimAM, [1024]] # 10
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
4、最后把yaml文件放到train.Py文件里就可以运行了
成功结果如下(可以看到SimAM已经成功导入进去啦!!!!完结撒花)
于是乎SimAM注意力机制就成功导入啦!其他即插即用的注意力机制也可以按照这个方法哦。
如果出现显示未定义等报错,大家一定要看看自己注册那几个步骤有没有遗漏。
祝各位视觉小伙伴们研学之路顺顺利利。