import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
加载波士顿房价数据集
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = boston.target
划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
创建线性回归模型
model = LinearRegression()
训练模型
model.fit(X_train, y_train)
预测测试集
y_pred = model.predict(X_test)
计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差: {mse}")