YOLOv5复现(论文复现)
本文所涉及所有资源均在传知代码平台可获取
文章目录
-
- YOLOv5复现(论文复现)
-
-
- 概述
- 模型结构
- 正负样本匹配策略
- 损失计算
- 数据增强
- 使用方式
-
- 训练
- 测试
- 验证
- Demo
-
概述
YOLOv5是由Ultralytics公司于2020年6月开源的目标检测模型,具有轻量化、易用性和高性能等特点,在不同的硬件平台上提供了很好的速度和性能平衡,凭借其优秀的实时性和准确性在工业、安防、无人驾驶和许多其他领域都有广泛的应用。YOLOv5是YOLO系列中最受欢迎的工作之一,但就其整体架构而言,YOLOv5可以看作是YOLOv4的“精心调教”版,通过对YOLOv4的网络结构、优化器超参、数据预处理超参、损失函数超参等多个超参数调优,使得YOLOv5的性能要远远优于YOLOv4,但整体架构仍旧延续了YOLOv4的Backbone+SPP+PaFPN+Head的结构,并无较大的改动。从结构上来看,YOLOv5仍采用了YOLOv4的CSPDarkNet结构,设计了width因子和depth因子来对模型做缩放,从而构建出了N/S/M/L/X等不同的模型尺度&#x