新建 test.py
import torch
import torchvision.transforms
from PIL import Image
from torch import nn
image_path = "./imgs/dog.png"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
model = torch.load("tudui_29.pth")
print(model)
image = torch.reshape(image,(1,3,32,32))
image = image.cuda()
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))
任意截图一张狗狗图片并保存在imgs文件下
模型加载前把模型结构复制进来,否则torch.load会报错
model = torch.load("tudui_29.pth")
print(model)
还需要将图片移到cuda上
image = torch.reshape(image,(1,3,32,32))
image = image.cuda()
在train.py中train_data 中含标签信息
如果使用cpu需要以下修改:使用gpu则不需要
飞机