import torch
# Prepare dataset
x_data=torch.Tensor([[1.0],[2.0],[3.0]])
y_data=torch.Tensor([[2.0],[4.0],[6.0]])
# Design model using Class
## inherit from nn.Module
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear=torch.nn.Linear(1,1)
def forward(self,x):
y_pred=self.linear(x)
return y_pred
model=LinearModel()
# Construct loss and optimizer
## using PyTorch API
criterion=torch.nn.MSELoss(size_average=False)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
# Training cycle
## forward,backward,update
for epoch in range(1000):
y_pred=model(x_data)
loss=criterion(y_pred,y_data)
print(epoch,loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())
x_test=torch.Tensor([[4.0]])
y_test=model(x_test)
print('y_pred=',y_test.data)
准备数据,构造模型,定义损失和优化,模型训练与测试
通过减小损失,更新模型参数学习到特征和标签之间的关系
预测新的特征