使用Milvus进行分类任务主要涉及数据准备、集合创建、数据插入、索引构建以及分类查询等步骤。以下是一个清晰的步骤说明:
一、数据准备
- 数据集:首先,你需要一个待分类的数据集。这个数据集可以包含图像特征向量、文本特征向量、音频特征向量等,具体取决于你的任务需求。
- 特征提取:根据数据集的类型,使用合适的特征提取方法将数据转换为向量表示。例如,对于图像数据,可以使用深度学习模型(如ResNet、VGG等)提取特征向量。
- 数据清洗:在将数据集导入Milvus之前,进行数据清洗以确保数据质量。这可能包括去除重复项、处理缺失值等。
二、集合创建
- 定义集合模式:在Milvus中创建一个新的集合,并定义其模式。集合模式应包含主键字段(如ID)和向量字段(用于存储特征向量)。例如,定义一个128维的浮点型向量字段。
python复制代码
from pymilvus import Collection, FieldSchema, DataType |
|
fields = [ |
|
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), |
|