tensor自身带有softmax,log,log_softmax函数,与torch.nn,torch.nn.functional 类似,具体的原理可以去看相关的源码,实际使用中知道这些会比较方便。
import torch
if __name__ == '__main__':
a = torch.randn(2,4)
print(f"a = {a}")
print(f"a.softmax(dim=-1) = {a.softmax(dim=-1)}")
print(f"a.softmax(dim=-1).log() = {a.softmax(dim=-1).log()}")
print(f"a.log_softmax(dim=-1) = {a.log_softmax(dim=-1)}")
输出结果:
a = tensor([[ 0.8762, -1.5293, -0.0871, 2.5112],
[-0.5123, -0.9871, 1.0301, 0.5816]])
a.softmax(dim=-1) = tensor([[0.1515, 0.0137, 0.0578, 0.7770],
[0.1077, 0.0670, 0.5037, 0.3216]])
a.softmax(dim=-1).log() = tensor([[-1.8873, -4.2927, -2.8505, -0.2523],
[-2.2283, -2.7031, -0.6858, -1.1344]])
a.log_softmax(dim=-1) = tensor([[-1.8873, -4.2927, -2.8505, -0.2523],
[-2.2283, -2.7031, -0.6858, -1.1344]])