CNN项目2-AlexNet模型之花分类

该文详细介绍了如何利用AlexNet模型在PyTorch中对花卉进行分类。首先,文章定义了类别文件class_indices.json,接着在model.py中构建了AlexNet模型,包括特征提取层和分类器。然后在train.py中,定义了数据集,使用数据增强和预处理,进行训练并保存最佳模型。最后,在predict.py中加载模型,对单张图片进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CNN项目2-AlexNet模型之花分类

1.类别文件

  • class_indices.json文件
{
    "0": "daisy",
    "1": "dandelion",
    "2": "roses",
    "3": "sunflowers",
    "4": "tulips"
}

2. 模型

  • model.py文件
import torch
import torch.nn as nn
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super().__init__()
# 2.1 卷积神经网络提取特征部分叫做features即特征层.分类网络部分神经网络叫做classifier
        self.features = nn.Sequential(
                nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2),
                nn.Conv2d(48, 128, kernel_size=5, padding=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2),
                nn.Conv2d(128, 192, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(192, 192, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(192, 128, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2) # output [128, 6, 6])
        self.classifier = nn.Sequential(
                nn.Dropout(p=0.5),
                nn.Linear(128 * 6 * 6, 2048),
                nn.ReLU(inplace=True),
                nn.Dropout(p=0.5),
                nn.Linear(2048, 2048),
                nn.ReLU(inplace=True),
                nn.Linear(2048, num_classes),)
    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

3.训练

  • train.py文件
import os
import json
import sys
from tqdm import tqdm
import torch
import torch.nn as nn
from torchvision import transforms, datasets
from model import AlexNet
# 3.1 定义数据集
def main():
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print(f'using {device}')
    image_path = os.path.join('./', 'flower_data')
    # print(image_path)
    assert os.path.exists(image_path), "image path does not exist"
    data_transform = {
            'train': transforms.Compose([transforms.RandomResizedCrop(224),
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
            'val': transforms.Compose([transforms.Resize((224, 224)),
                                       transforms.ToTensor(),
                                       transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, 'train'),
                         transform=data_transform['train'])
# 3.2 数据生成器
    train_num = len(train_dataset)
    flower_list = train_dataset.class_to_idx
    print(flower_list)
    cla_dict = dict((val, key) for key, val in flower_list.items())
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print(f'using {nw} dataloader workers every process')
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                batch_size=batch_size, shuffle=True,
                                num_workers=nw)
    # images, labels = next(iter(train_loader))
    # print(labels.numpy())
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, 'val'),
                                            transform=data_transform['val'])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,batch_size=batch_size,
                                               shuffle=False,num_workers=nw)
# 3.3 训练
    net = AlexNet(num_classes=5)
    net.to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(net.parameters(), lr=0.0002)
    epochs = 10
    save_path = './AlexNet.pth'
    best_acc = 0.0
    train_step = len(train_loader)
    for epoch in range(epochs):
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            outputs = net(images.to(device))
            loss = loss_fn(outputs, labels.to(device))
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            train_bar.desc = f'train epoch {epoch + 1}/ {epochs} loss: {loss:.3f}'
# 3.4 校验
        net.eval()
        acc = 0.0
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
        val_accuracy = acc / val_num
        print(f'[epoch {epoch + 1}] train_loss: {running_loss / train_step:.3f}, val_accuracy:{val_accuracy:.3f}')
        if val_accuracy > best_acc:
            best_acc = val_accuracy
            torch.save(net.state_dict(), save_path)
if __name__ == '__main__':
    main()

在这里插入图片描述

4.预测

  • predict.py文件
import os
import json
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
from model import AlexNet
# 4.1 图片数据读取 
def main():
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    data_transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    img_path = './4.jpeg'
    assert os.path.exists(img_path), f'{img_path} does not exist'
    img = Image.open(img_path)
# 4.2 图片数据显示 
    plt.imshow(img)
# 4.3 图片数据增强及预处理
    img = data_transform(img)
    # print(img.shape)
    img = torch.unsqueeze(img, dim=0)
    # print(img.shape)
    json_path = './class_indices.json'
    assert os.path.exists(json_path), f'file {json_path} does not exist'
    with open(json_path, 'r') as f:
        class_dict = json.load(f)
    # print(class_dict)
# 4.4 加载模型及参数
    model = AlexNet(num_classes=5).to(device)
    weights_path = './AlexNet.pth'
    assert os.path.exists(weights_path), f'file {weights_path} does not exist'
    model.load_state_dict(torch.load(weights_path))
# 4.5 预测
    model.eval()
    with torch.no_grad():
        output = model(img.to(device))
        # print(output)
        output = torch.squeeze(output).cpu()
        predict = torch.softmax(output, dim=0)
        predict_class = torch.argmax(predict).numpy()
    print_res = f"class: {class_dict[str(predict_class)]}, prob: {predict[predict_class].numpy():.3f}"
    plt.title(print_res)
    plt.show()
if __name__ == '__main__':
    main()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿值

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值