[NOIP2006 提高组] 作业调度方案(含代码)

[NOIP2006 提高组] 作业调度方案

题目描述

我们现在要利用 m m m 台机器加工 n n n 个工件,每个工件都有 m m m 道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号 j-k 表示一个操作,其中 j j j 1 1 1 n n n 中的某个数字,为工件号; k k k 1 1 1 m m m 中的某个数字,为工序号,例如 2-4 表示第 2 2 2 个工件第 4 4 4 道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当 n = 3 , m = 2 n=3,m=2 n=3,m=2 时,1-1,1-2,2-1,3-1,3-2,2-2 就是一个给定的安排顺序,即先安排第 1 1 1 个工件的第 1 1 1 个工序,再安排第 1 1 1 个工件的第 2 2 2 个工序,然后再安排第 2 2 2 个工件的第 1 1 1 个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

  1. 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

  2. 同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为 1 1 2 3 3 2

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取 n = 3 , m = 2 n=3,m=2 n=3,m=2,已知数据如下(机器号/加工时间):

工件号工序 1工序 2
1 1 1 1 / 3 1/3 1/3 2 / 2 2/2 2/2
2 2 2 1 / 2 1/2 1/2 2 / 5 2/5 2/5
3 3 3 2 / 2 2/2 2/2 1 / 4 1/4 1/4

则对于安排顺序 1 1 2 3 3 2,下图中的两个实施方案都是正确的。但所需要的总时间分别是 10 10 10 12 12 12

方案 1,用时 10 10 10

时间12345678910
机器 1 执行工序1-11-11-12-12-13-23-23-23-2
机器 2 执行工序3-13-11-21-22-22-22-22-22-2

方案 2,用时 12 12 12

时间123456789101112
机器 1 执行工序1-11-11-12-12-13-23-23-23-2
机器 2 执行工序1-21-23-13-12-22-22-22-22-2

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件 ( 1. ) ( 2. ) (1.)(2.) (1.)(2.) 的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件 ( 1. ) ( 2. ) (1.)(2.) (1.)(2.) 的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

输入格式

1 1 1 行为两个正整数 m m m, n n n,用一个空格隔开,
其中 m ( < 20 ) m(<20) m(<20) 表示机器数, n ( < 20 ) n(<20) n(<20) 表示工件数。

2 2 2 行: m × n m \times n m×n 个用空格隔开的数,为给定的安排顺序。

接下来的 2 n 2n 2n 行,每行都是用空格隔开的 m m m 个正整数,每个数不超过 20 20 20

其中前 n n n 行依次表示每个工件的每个工序所使用的机器号,第 1 1 1 个数为第 1 1 1 个工序的机器号,第 2 2 2 个数为第 2 2 2 个工序机器号,等等。

n n n 行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

输出格式

1 1 1 个正整数,为最少的加工时间。

样例 #1

样例输入 #1

2 3
1 1 2 3 3 2
1 2 
1 2 
2 1
3 2 
2 5 
2 4

样例输出 #1

10

题目来源

NOIP 2006 提高组 第三题(洛谷)

题解

#include<iostream>
#include<cstdio>
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;

int n, m, ans; // n 为工件数,m 为机器数,ans 为最终所需的总时间
int whe[25][25], tim[25][25], num[405], calc[405], last[25]; 
bool vis[25][10005];

int main() {
    int i, j;
    scanf("%d%d", &m, &n); // 读取机器数和工件数
    fo(i, 1, n * m) scanf("%d", &num[i]); // 读取安排顺序
    
    // 读取每个工件的每道工序所使用的机器号
    fo(i, 1, n) 
        fo(j, 1, m) 
            scanf("%d", &whe[i][j]);
    
    // 读取每个工件的每道工序的加工时间
    fo(i, 1, n) 
        fo(j, 1, m) 
            scanf("%d", &tim[i][j]);

    // 遍历每个操作
    fo(i, 1, n * m) {
        calc[num[i]]++; // 记录每个工件已经执行的工序数
        int p1 = num[i], p2 = calc[num[i]]; // p1 为工件号,p2 为当前工序号
        int w = whe[p1][p2], t = tim[p1][p2]; // w 为当前工序所使用的机器号,t 为当前工序的加工时间
        int res = 0; // 记录找到的连续空闲时间段长度

        // 寻找合适的空档插入当前工序
        fo(j, last[p1] + 1, 10000) {
            if (vis[w][j]) res = 0; // 如果当前时刻机器被占用,重置连续空闲时间段长度
            else res++; // 否则,增加连续空闲时间段长度

            if (res == t) break; // 如果找到了足够的连续空闲时间段,退出循环
        }

        int tmp = j; // 记录当前工序结束的时间点
        // 将当前工序占用的时间段标记为已占用
        fo(j, tmp - t + 1, tmp) 
            vis[w][j] = 1;

        last[p1] = tmp; // 更新当前工件最后一个工序的结束时间
        ans = max(ans, last[p1]); // 更新最终所需的总时间
    }
    
    printf("%d\n", ans); // 输出最终所需的总时间
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java 猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值