import numpy as np
#分解矩阵A至L和U
def LU_mat(A):
L=np.zeros(np.shape(A))
U=np.eye(len(A))
L[0,0]=A[0,0]
U[0,1]=A[0,1]/A[0,0]
for i in range(1,A.shape[0]-1):
L[i,i-1]=A[i,i-1]
L[i,i]=A[i,i]-A[i,i-1]*U[i-1,i]
U[i,i+1]=A[i,i+1]/(A[i,i]-A[i,i-1]*U[i-1,i])
n=A.shape[0]-1
L[n,n-1]=A[n,n-1]
L[n,n]=A[n,n]-A[n,n-1]*U[n-1,n]
print(L,U)
return L,U
def Solve(A,f):
L,U=LU_mat(A)
y=np.zeros((f.shape[0],1))
x=np.zeros((f.shape[0],1))
y[0,0]=f[0,0]/L[0,0]
for i in range(1,L.shape[0]):
y[i,0]=(f[i,0]-L[i,i-1])/L[i,i]
x[U.shape[0]-1]=y[U.shape[0]-1,0]
for j in range(U.shape[0]-2,-1,-1):
x[j,0]=y[j,0]-U[j,j+1]*x[j+1,0]
return x
A = np.array([[4,1,0],[0,3,2],[0,-1,3]])
f = np.array([[2],[9],[8]])
print("原系数矩阵A:")
print(A, "\n")
print("f:")
print(f, "\n")
print("最终求解结果:")
print(Solve(A, f))
数值分析——追赶法求解线性方程组的python实现
于 2022-07-23 21:47:10 首次发布