【VTK】dicom序列换切片

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL2);
VTK_MODULE_INIT(vtkInteractionStyle);

#include <vtkSmartPointer.h>
#include <vtkMetaImageReader.h>
#include <vtkDicomImageReader.h>
#include <vtkMatrix4x4.h>
#include <vtkLookupTable.h>
#include <vtkImageMapToColors.h>
#include <vtkImageActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkInteractorStyleImage.h>

#include <vtkCommand.h> //建立“观察者/命令”模式监听鼠标消息 完成交互
#include <vtkImageReslice.h>
#include <vtkImageData.h>

class vtkImageInteractionCallback : public vtkCommand
{
public:
	static vtkImageInteractionCallback* New() //回调函数初始化函数
	{
		return new vtkImageInteractionCallback;
	}
	vtkImageInteractionCallback()
	{
		this->Slicing = 0;
		this->ImageReslice = 0;
		this->Interactor = 0;
	}
	void SetImageReslice(vtkImageReslice* reslice)
	{
		this->ImageReslice = reslice;
	}
	vtkImageReslice* GetImageReslice()
	{
		return this->ImageReslice;
	}
	void SetImageResliceColorMap(vtkImageMapToColors* colorMap)
	{
		this->colorMap = colorMap;
	}
	vtkImageMapToColors* GetImageResliceColorMap()
	{
		return this->colorMap;
	}
	void SetInteractor(vtkRenderWindowInteractor* interactor)
	{
		this->Interactor = interactor;
	}
	vtkRenderWindowInteractor* GetInteractor()
	{
		return  this->Interactor;
	}
	virtual void Execute(vtkObject*, unsigned long event, void*)
	{
		vtkRenderWindowInteractor* interactor = GetInteractor();
		int lastPos[2];
		interactor->GetLastEventPosition(lastPos);
		int currPos[2];
		interactor->GetEventPosition(currPos);

		if (event == vtkCommand::LeftButtonPressEvent)
		{
			this->Slicing = 1; //标志位 
		}
		else if (event == vtkCommand::LeftButtonReleaseEvent)
		{
			this->Slicing = 0; //标志位 
		}
		else if (event == vtkCommand::MouseMoveEvent)
		{
			if (this->Slicing)//检验鼠标左键已经按下 正在执行操作
			{
				std::cout << "LeftButton has been pressed: " << std::endl;
				vtkImageReslice* reslice = this->ImageReslice;
				//记下鼠标Y向变化的幅值大小
				int deltaY = lastPos[1] - currPos[1];
				std::cout << "鼠标Y向变化的幅值大小: " << deltaY << std::endl;
				//记下鼠标X向变化的幅值大小
				int deltaX = lastPos[0] - currPos[0];
				std::cout << "鼠标X向变化的幅值大小: " << deltaX << std::endl;

				reslice->Update();
				double sliceSpacing = reslice->GetOutput()->GetSpacing()[2];
				vtkMatrix4x4* matrix = reslice->GetResliceAxes();
				//重新定位切片需要经过的中心点
				double point[4];
				double center[4];
				point[0] = 0;
				point[1] = 0;
				point[2] = sliceSpacing * deltaY;
				point[3] = 1.0;
				matrix->MultiplyPoint(point, center);
				//***********理解MultiplyPoint   center4*1  =  matrix4*4  乘以  point4*1
				for (int i = 0; i < 4; i++)
				{
					for (int j = 0; j < 4; j++)
					{
						std::cout << matrix->GetElement(i, j) << "\t";
					}
					std::cout << "\n";
				}
				std::cout << "\n";
				std::cout << point[0] << "\t" << point[1] << "\t" << point[2] << "\t" << point[3] << "\n";
				std::cout << center[0] << "\t" << center[1] << "\t" << center[2] << "\t" << center[3] << "\n";

				//******************
				matrix->SetElement(0, 3, center[0]);
				matrix->SetElement(1, 3, center[1]);
				matrix->SetElement(2, 3, center[2]);
				static double colorWindowLevel = 500;
				static double colorWindowWith = 2000;
				colorWindowLevel += deltaX;

				colorMap->GetLookupTable()->SetRange(colorWindowLevel - colorWindowWith / 2, colorWindowLevel + colorWindowWith / 2);

				reslice->Update();
				colorMap->Update();
				interactor->Render();
			}
			else
			{
				vtkInteractorStyle* style = vtkInteractorStyle::SafeDownCast(
					interactor->GetInteractorStyle());
				if (style)
				{
					style->OnMouseMove();
				}
			}
		}
	}
private:
	int Slicing;
	vtkImageReslice* ImageReslice;
	vtkImageMapToColors* colorMap;
	vtkRenderWindowInteractor* Interactor;
};
//**********************************************************************************//
int main()
{
	vtkSmartPointer<vtkMetaImageReader> reader =
		vtkSmartPointer<vtkMetaImageReader>::New();
	reader->SetFileName("brain.mhd");
	reader->Update();

	int extent[6];
	double spacing[3];
	double origin[3];

	reader->GetOutput()->GetExtent(extent);
	reader->GetOutput()->GetSpacing(spacing);
	reader->GetOutput()->GetOrigin(origin);

	double center[3];
	center[0] = origin[0] + spacing[0] * 0.5 * (extent[0] + extent[1]);
	center[1] = origin[1] + spacing[1] * 0.5 * (extent[2] + extent[3]);
	center[2] = origin[2] + spacing[2] * 0.5 * (extent[4] + extent[5]);

	static double axialElements[16] = {
		1, 0, 0, 0,
		0, 1, 0, 0,
		0, 0, 1, 0,
		0, 0, 0, 1
	};

	vtkSmartPointer<vtkMatrix4x4> resliceAxes =
		vtkSmartPointer<vtkMatrix4x4>::New();
	resliceAxes->DeepCopy(axialElements);

	resliceAxes->SetElement(0, 3, center[0]);
	resliceAxes->SetElement(1, 3, center[1]);
	resliceAxes->SetElement(2, 3, center[2]);

	vtkSmartPointer<vtkImageReslice> reslice =
		vtkSmartPointer<vtkImageReslice>::New();
	reslice->SetInputConnection(reader->GetOutputPort());
	reslice->SetOutputDimensionality(2);
	reslice->SetResliceAxes(resliceAxes);
	reslice->SetInterpolationModeToLinear();
	reslice->Update();

	vtkSmartPointer<vtkLookupTable> colorTable =
		vtkSmartPointer<vtkLookupTable>::New();
	colorTable->SetRange(0, 1000);
	colorTable->SetValueRange(0.0, 1.0);
	colorTable->SetSaturationRange(0.0, 0.0);
	colorTable->SetRampToLinear();
	colorTable->Build();

	vtkSmartPointer<vtkImageMapToColors> colorMap =
		vtkSmartPointer<vtkImageMapToColors>::New();
	colorMap->SetLookupTable(colorTable);
	colorMap->SetInputConnection(reslice->GetOutputPort());
	colorMap->Update();

	vtkSmartPointer<vtkImageActor> imgActor =
		vtkSmartPointer<vtkImageActor>::New();
	imgActor->SetInputData(colorMap->GetOutput());
	imgActor->Update();

	vtkSmartPointer<vtkRenderer> renderer =
		vtkSmartPointer<vtkRenderer>::New();
	renderer->AddActor(imgActor);
	renderer->SetBackground(.4, .5, .6);

	vtkSmartPointer<vtkRenderWindow> renderWindow =
		vtkSmartPointer<vtkRenderWindow>::New();
	renderWindow->SetSize(500, 500);
	renderWindow->AddRenderer(renderer);

	vtkSmartPointer<vtkRenderWindowInteractor> renderWindowInteractor =
		vtkSmartPointer<vtkRenderWindowInteractor>::New();
	vtkSmartPointer<vtkInteractorStyleImage> imagestyle =
		vtkSmartPointer<vtkInteractorStyleImage>::New();

	renderWindowInteractor->SetInteractorStyle(imagestyle);
	renderWindowInteractor->SetRenderWindow(renderWindow);
	renderWindowInteractor->Initialize();
	//****************建立 观察者-命令 模式****************//
	vtkSmartPointer<vtkImageInteractionCallback> callback =
		vtkSmartPointer<vtkImageInteractionCallback>::New();
	callback->SetImageReslice(reslice);
	callback->SetInteractor(renderWindowInteractor);
	callback->SetImageResliceColorMap(colorMap);

	imagestyle->AddObserver(vtkCommand::MouseMoveEvent, callback);
	imagestyle->AddObserver(vtkCommand::LeftButtonPressEvent, callback);
	imagestyle->AddObserver(vtkCommand::LeftButtonReleaseEvent, callback);

	renderWindowInteractor->Start();

	return 0;
}

### 使用VTK库读取和处理DICOM序列文件 为了实现使用VTK库读取和处理DICOM序列文件的功能,可以采用 `vtkDICOMImageReader` 类来完成这一任务。该类能够解析一系列的 DICOM 文件,并将其组合成三维体积数据以便进一步分析或可视化。 以下是完整的 Python 示例代码: ```python import vtk def read_dicom_directory(directory_path): # 创建一个 vtkDICOMImageReader 对象用于读取 DICOM 数据 reader = vtk.vtkDICOMImageReader() # 设置要读取的目录路径 reader.SetDirectoryName(directory_path) # 更新读者对象以准备后续操作 reader.Update() return reader def visualize_volume(reader): # 将读取的数据传递给图像到多边形过滤器 image_data = reader.GetOutput() # 获取输出的图像数据 # 创建颜色传输函数 color_tf = vtk.vtkColorTransferFunction() color_tf.AddRGBPoint(-3024, 0.0, 0.0, 0.0) # 黑色背景 color_tf.AddRGBPoint(-77, 0.89, 0.41, 0.0) # 软组织 color_tf.AddRGBPoint(94, 0.89, 0.41, 0.0) # 更亮软组织 color_tf.AddRGBPoint(179, 1.0, 0.89, 0.83) # 骨骼 color_tf.AddRGBPoint(260, 1.0, 0.89, 0.83) # 白色骨骼 # 创建不透明度传输函数 opacity_tf = vtk.vtkPiecewiseFunction() opacity_tf.AddPoint(-3024, 0.0) # 完全透明 opacity_tf.AddPoint(-77, 0.0) # 开始逐渐增加不透明度 opacity_tf.AddPoint(94, 0.2) # 较高不透明度 opacity_tf.AddPoint(179, 0.5) # 半透明效果 opacity_tf.AddPoint(260, 0.8) # 接近完全不透明 # 创建体属性映射器 volume_mapper = vtk.vtkGPUVolumeRayCastMapper() volume_mapper.SetInputData(image_data) # 创建体属性 volume_property = vtk.vtkVolumeProperty() volume_property.SetColor(color_tf) volume_property.SetScalarOpacity(opacity_tf) volume_property.ShadeOn() volume_property.SetInterpolationTypeToLinear() # 创建体模块 volume = vtk.vtkVolume() volume.SetMapper(volume_mapper) volume.SetProperty(volume_property) # 渲染设置 renderer = vtk.vtkRenderer() render_window = vtk.vtkRenderWindow() render_window.AddRenderer(renderer) render_window_interactor = vtk.vtkRenderWindowInteractor() render_window_interactor.SetRenderWindow(render_window) # 添加体积至渲染器 renderer.AddVolume(volume) renderer.SetBackground(0.1, 0.2, 0.4) # 设置背景颜色为深蓝色 # 启动交互窗口 render_window.Render() render_window_interactor.Start() if __name__ == "__main__": directory_path = "/path/to/dicom/files" # 替为实际的DICOM文件夹路径 dicom_reader = read_dicom_directory(directory_path) visualize_volume(dicom_reader) ``` 上述代码实现了以下功能: - **读取DICOM序列**:通过指定存储 DICOM 文件的目录路径,利用 `vtkDICOMImageReader` 来加载整个系列的 DICOM 图像[^2]。 - **构建三维模型**:将二维切片数据转化为三维结构,并应用颜色和不透明度转移函数进行增强显示[^1]。 - **可视化**:创建了一个基于 VTK 的渲染环境,允许用户查看重建后的三维医学影像[^3]。 #### 注意事项 确保安装了必要的依赖项(如 VTK),并且替 `/path/to/dicom/files` 为实际存在的本地 DICOM 序列文件夹位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值