1. 数据聚合
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
1.1. 聚合的种类
聚合常见的有三类:
- 桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一个月为一组
- 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Status:同时求max、min、avg、sum等
- 管道(Pipeline)聚合:其他聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
1.2. DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
1.2.1. Bucket聚合语法
语法如下:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
结果如图:
1.2.2. 聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
1.2.3. 限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
这次,聚合得到的品牌明显变少了:
1.2.4. Metric聚合语法
上面我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
1.2.5. 小结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
1.3. RestAPI实现聚合
1.3.1. API语法
聚合条件与query条件同级别,因此需要使用request.source()
来指定聚合条件。
语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
1.3.2. 业务需求
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:
分析:目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。
例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。
如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?
使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。
因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。
查看浏览器可以发现,前端其实已经发出了这样的一个请求:
请求参数与搜索文档的参数完全一致。
返回值类型就是页面要展示的最终结果:
结果是一个Map结构:
- key是字符串,城市、星级、品牌、价格
- value是集合,例如多个城市的名称
1.3.3. 业务实现
在cn.fg.hotel.controller
包的HotelController
中添加一个方法,遵循下面的要求:
- 请求方式:
POST
- 请求路径:
hotel/filters
- 请求参数:
RequestParams
,与搜索文档的参数一致 - 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("/filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params) {
return hotelService.getFilters(params);
}
在cn.fg.hotel.service.HotelService
中定义新方法:
/**
* 获取酒店筛选条件
* @param params
* @return
*/
Map<String, List<String>> getFilters(RequestParams params);
在cn.fg.hotel.service.impl.HotelServiceImpl
中实现该方法:
@Override
public PageResult searchHotel(RequestParams params) throws IOException {
// 1. 准备Request
SearchRequest request = new SearchRequest("hotel");
// 2. 准备DSL
buildBasicQuery(params, request);
// 分页
int page = params.getPage();
int size = params.getSize();
request.source().from((page - 1) * size).size(size);
// 排序
String location = params.getLocation();
if (location != null && !location.isEmpty()) {
request.source().sort(SortBuilders
.geoDistanceSort("location", new GeoPoint(location))
.order(SortOrder.ASC)
.unit(DistanceUnit.KILOMETERS));
}
// 3. 发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4. 解析结果
return handleResponse(response);
}
@Override
public Map<String, List<String>> getFilters(RequestParams params) throws IOException {
// 1. 准备Request
SearchRequest request = new SearchRequest("hotel");
// 2. 准备DSL
buildBasicQuery(params, request);
request.source().size(0); // 聚合查询时,size为0
// 聚合
buildAggregation(request);
// 3. 发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4. 解析结果
HashMap<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 根据品牌名称,获取品牌结果
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("品牌", brandList);
// 根据城市名称,获取城市结果
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("城市", cityList);
// 根据星级名称,获取星级结果
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("星级", starList);
return result;
}
private List<String> getAggByName(Aggregations aggregations, String aggName) {
// 根据聚合名称,获取聚合结果
Terms brandTerms = aggregations.get(aggName);
// 获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 遍历
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
// 获取key
String key = bucket.getKeyAsString();
brandList.add(key);
}
return brandList;
}
2. 自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
因为需要根据拼音字母来推断,因此要用到拼音分词功能。
2.1. 拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:github链接
安装和之前的IK分词器步骤一样。
安装后测试效果:
2.2. 自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword就是不分词;还有ik_smart
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
声明自定义分词器的语法如下:
PUT /test
{
"settings": {
"analysis": {
"analyzer": { // 自定义分词器
"my_analyzer": { // 分词器名称
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": { // 自定义tokenizer filter
"py": { // 过滤器名称
"type": "pinyin", // 过滤器类型,这里是pinyin
"keep_full_pinyin": false, // 不保留完整的拼音分词
"keep_joined_full_pinyin": true, // 保留连接在一起的完整拼音
"keep_original": true, // 保留原始的中文分词
"limit_first_letter_length": 16, // 限制拼音首字母的长度为 16
"remove_duplicated_term": true, // 移除重复的分词
"none_chinese_pinyin_tokenize": false // 不对非中文进行拼音分词
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "ik_smart"
}
}
}
}
2.3. 自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型
- 字段的内容一般是用来补全的多个词条形成的数组
比如:一个这样的索引库:
PUT test
{
"mappings": {
"properties": {
"title": {
"type": "completion"
}
}
}
}
然后插入下面的数据:
// 示例数据
POST test/_doc
{
"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
"title": ["SK-II", "PITERA"]
}
POST test/_doc
{
"title": ["Nintendo", "switch"]
}
查询的DSL语句如下:
// 自动补全查询
GET /test/_search
{
"suggest": {
"title_suggest": {
"text": "s", // 关键字
"completion": {
"field": "title", // 补全查询的字段
"skip_duplicates": true, // 跳过重复的
"size": 10 // 获取前10条结果
}
}
}
}
2.4. 实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。
另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。
因此,总结一下,我们需要做的事情包括:
- 修改hotel索引库结构,设置自定义拼音分词器
- 修改索引库的name、all字段,使用自定义分词器
- 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
- 给HotelDoc类添加suggestion字段,内容包含brand、business
- 重新导入数据到hotel库
2.4.1. 修改酒店映射结构
代码如下:
PUT /hotel
{
"settings": {
"analysis": {
"analyzer": {
"text_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"name": {
"type": "text",
"analyzer": "text_analyzer",
"search_analyzer": "ik_smart",
"copy_to": "all"
},
"address": {
"type": "keyword",
"copy_to": "all"
},
"price": {
"type": "integer",
"copy_to": "all"
},
"score": {
"type": "integer",
"copy_to": "all"
},
"brand": {
"type": "keyword",
"copy_to": "all"
},
"city": {
"type": "keyword",
"copy_to": "all"
},
"starName": {
"type": "keyword",
"copy_to": "all"
},
"business": {
"type": "keyword"
},
"location": {
"type": "geo_point"
},
"pic": {
"type": "keyword",
"index": false
},
"all": {
"type": "text",
"analyzer": "text_analyzer",
"search_analyzer": "ik_smart"
},
"suggestion": {
"type": "completion",
"analyzer": "completion_analyzer"
}
}
}
}
2.4.2. 修改HotelDoc实体
HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>
,然后将brand、city、business等信息放到里面。
2.4.3. 重新导入
重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
2.4.4. 自动补全查询的JavaAPI
之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
2.4.5. 实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为List<String>
1)在cn.fg.hotel.controller
包下的HotelController
中添加新接口,接收新的请求:
@GetMapping("/suggestion")
public List<String> getSuggestion(@RequestParam("key") String prefix) throws IOException {
return hotelService.getSuggestion(prefix);
}
2)在cn.fg.hotel.service
包下的hotelService
中添加方法:
List<String> getSuggestion(String prefix) throws IOException;
3)在cn.fg.hotel.service.impl.HotelServiceImpl
中实现该方法:
@Override
public List<String> getSuggestion(String prefix) throws IOException {
SearchRequest request = new SearchRequest("hotel");
request.source().suggest(new SuggestBuilder().addSuggestion("suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix(prefix)
.skipDuplicates(true)
.size(10)
));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
Suggest suggest = response.getSuggest();
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
List<String> list = new ArrayList<>(options.size());
for (CompletionSuggestion.Entry.Option option : options) {
String text = option.getText().toString();
list.add(text);
}
return list;
}
效果如下:
3. 数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
3.1. 思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
3.1.1. 同步调用
步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口
3.1.2. 异步通知
步骤如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
3.1.3. 监听binlog
步骤如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
3.1.4. 选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
3.2. 实现数据同步
3.2.1. 创建hotel-admin项目
写好代码后,其中包含了酒店的CRUD功能:
3.2.2. 声明交换机、队列
MQ结构如图:
1)引入依赖
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<!--amqp-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2)声明队列交换机名称
在hotel-admin和hotel-demo中的cn.fg.hotel.constants
包下新建一个类MqConstants
:
package cn.fg.hotel.constants;
public class MqConstants {
/**
* 交换机
*/
public final static String HOTEL_EXCHANGE = "hotel.topic";
/**
* 监听新增和修改的队列
*/
public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
/**
* 监听删除的队列
*/
public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
/**
* 新增或修改的RoutingKey
*/
public final static String HOTEL_INSERT_KEY = "hotel.insert";
/**
* 删除的RoutingKey
*/
public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
3)声明队列交换机
在hotel-demo中,定义配置类,声明队列、交换机:
package cn.fg.hotel.config;
import cn.fg.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MqConfig {
@Bean
public TopicExchange topicExchange() {
// 表示交换机是持久的(durable),这意味着即使RabbitMQ重启,交换机也会存在
// 表示交换机是自动删除的(auto-delete),这意味着当没有队列绑定到交换机时,交换机会自动删除
return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
}
@Bean
public Queue insertQueue() {
return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
}
@Bean
public Queue deleteQueue() {
return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
}
@Bean
public Binding insertQueueBinding() {
return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(
MqConstants.HOTEL_INSERT_KEY
);
}
@Bean
public Binding deleteQueueBinding() {
return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(
MqConstants.HOTEL_DELETE_QUEUE
);
}
}
3.2.4. 发送MQ消息
在hotel-admin中的增删改业务中分别发送MQ消息:
3.2.5. 接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
1)首先在hotel-demo的cn.fg.hotel.service
包下的HotelService
中新增新增、删除业务
void insertById(Long id) throws IOException;
void deleteById(Long id) throws IOException;
2)给hotel-demo中的cn.fg.hotel.service.impl
包下的HotelServiceImpl中实现业务:
@Override
public void insertById(Long id) throws IOException {
// 根据id查询酒店数据
Hotel hotel = getById(id);
// 转为文档类型
HotelDoc hotelDoc = new HotelDoc(hotel);
// 1. 准备Request
IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
// 2. 准备JSON文档
request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
// 3. 准备发送请求
client.index(request, RequestOptions.DEFAULT);
}
@Override
public void deleteById(Long id) throws IOException {
// 1. 准备Request
DeleteRequest request = new DeleteRequest("hotel", id.toString());
// 2. 准备发送请求
client.delete(request, RequestOptions.DEFAULT);
}
3)编写监听器
在hotel-demo中的cn.fg.hotel.mq
包新增一个HotelListener类:
package cn.fg.hotel.mq;
import cn.fg.hotel.constants.MqConstants;
import cn.fg.hotel.service.HotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import java.io.IOException;
@Component
public class HotelListener {
@Autowired
private HotelService hotelService;
/**
* 监听酒店新增或修改
*
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
public void listenHotelInsertOrUpdate(Long id) throws IOException {
hotelService.insertById(id);
}
/**
* 监听酒店删除
*
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
public void listenHotelDelete(Long id) throws IOException {
hotelService.deleteById(id);
}
}
当mysql数据库的数据发生改变时,立即监听进行修改es的数据。
4. 集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica)
ES集群相关概念:
-
集群(cluster):一组拥有共同的 cluster name 的节点
-
节点(node) :集群中的一个 Elasticearch 实例
-
分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。
-
主分片(Primary shard):相对于副本分片的定义。
-
副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
4.1. 搭建ES集群
4.1.1. 搭建集群
我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。
部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间
1)首先编写一个docker-compose文件,内容如下:
version: '2.2'
services:
es01:
image: elasticsearch:7.12.1
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9200:9200
networks:
- elastic
es02:
image: elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data02:/usr/share/elasticsearch/data
ports:
- 9201:9200
networks:
- elastic
es03:
image: elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data03:/usr/share/elasticsearch/data
networks:
- elastic
ports:
- 9202:9200
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
es运行需要修改一些linux系统权限,修改/etc/sysctl.conf
文件
vi /etc/sysctl.conf
添加下面的内容:
vm.max_map_count=262144
然后执行命令,让配置生效:
sysctl -p
通过docker-compose启动集群:
docker-compose up -d
4.1.2. 集群状态监控
kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。
这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro
解压好的目录如下:
进入对应的bin目录:
双击其中的cerebro.bat文件即可启动服务。
访问http://localhost:9000 即可进入管理界面:
输入你的elasticsearch的任意节点的地址和端口,点击connect即可:
4.1.3. 创建索引库
1)利用kibana的DevTools创建索引库
在DevTools中输入指令:
PUT /itcast
{
"settings": {
"number_of_shards": 3, // 分片数量
"number_of_replicas": 1 // 副本数量
},
"mappings": {
"properties": {
// mapping映射定义 ...
}
}
}
2)利用cerebro创建索引库
利用cerebro还可以创建索引库:
填写索引库信息:
点击右下角的create按钮:
4.1.4. 查看分片效果
回到首页,即可查看索引库分片效果:
4.2. 集群脑裂问题
4.2.1. 集群职责划分
elasticsearch中集群节点有不同的职责划分:
默认情况下,集群中的任何一个节点都同时具备上述四种角色。
但是真实的集群一定要将集群职责分离:
- master节点:对CPU要求高,但是内存要求低
- data节点:对CPU和内存要求都高
- coordinating节点:对网络带宽、CPU要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
一个典型的es集群职责划分如图:
4.2.2. 脑裂问题
脑裂是因为集群中的节点失联导致的。
例如一个集群中,主节点与其它节点失联:
此时,node2和node3认为node1宕机,就会重新选主:
当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:
解决脑裂的方案是,要求选票超过( eligible节点数量 + 1 )/ 2
才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes
,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题。
例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。
4.2.3. 小结
master eligible节点的作用是什么?
- 参与集群选主
- 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求
data节点的作用是什么?
- 数据的CRUD
coordinator节点的作用是什么?
- 路由请求到其他节点
- 合并查询到的结果,返回给用户
4.3. 集群分布式存储
当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node 如何确定数据该存储到哪个分片呢?
4.3.1. 分片存储测试
插入三条数据:
测试可以看到,三条数据分别在不同分片:
结果:
4.3.2. 分片存储原理
elasticsearch会通过hash算法来计算文档应该存储到哪个分片:
说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
新增文档的流程如下:
解读:
- 新增一个id=1的文档
- 对id做hash运算,假如得到的是2,则应该存储到shard-2
- shard-2的主分片在node3节点,将数据路由到node3
- 保存文档
- 同步给shard-2的副本replica-2,在node2节点
- 返回结果给coordinating-node节点
4.4. 集群分布式查询
elasticsearch的查询分成两个阶段:
- scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
- gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户
4.5. 集群故障转移
集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。
1)例如一个集群结构如图:
现在,node1是主节点,其它两个节点是从节点。
2)突然,node1发生了故障:
宕机后的第一件事,需要重新选主,例如选中了node2:
node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3: