1 训练自己的数据集
在github搜索ultralytics并下载。

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀
环境配置不再赘述,本地配置自行搜索教程,若使用云服务器配置更为简单。
数据标注
pip install labelimg
启动标注工具
labelimg
标注格式设置为yolo
数据集划分比例 train:val:test 建议8:1:1 or 7:2:1

ultralytics提供了从小到大的五个v11模型,一般默认使用yolo11n
并且没有提供训练脚本,你可以再命令行指定训练参数,或创建train.py,将参数提前设置好。
tips:
- 若想训练yolo11n,yaml文件指定为yolo11n.yaml,若想训练yolo11s,yaml文件指定为yolo11s.yaml,以此类推
- 若不想加载预训练权重 ,model.load('') # loading pretrain weights保持注释状态,加载预训练权重的话,权重与yaml文件对应。
- Windows系统中将workers设置为大于1的值可能会报错
- 需要修改为自己的路径
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('./ultralytics/cfg/models/11/yolo11s.yaml')
# model.load('') # loading pretrain weights
model.train(data='./dataset/pest.yaml',
cache=False,
imgsz=640,
epochs=150,
batch=8,
close_mosaic=0,
workers=11,
# device='0',
optimizer='SGD', # using SGD
patience=50, # close earlystop
# resume=True, # 断点续训,YOLO初始化时选择last.pt
# amp=False, # close amp
# fraction=0.2,
project='runs/train',
name='exp',
)
训练完成后,进行验证
若你没有测试集,split需设置为val
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('./runs/train/exp/weights/best.pt')
model.val(data='./dataset/pest.yaml',
split='test',
imgsz=640,
batch=16,
# iou=0.7,
# rect=False,
# save_json=True, # if you need to cal coco metrice
project='runs/test',
name='exp',
)
在本人的数据集中,yolo11实现了优于目前大部分主流模型的性能。
2 YOLO11网络解析
yolo11网络的yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
总体上的网络对比

在网络结构中,未发生变化的模块为白色。
YOLO11网络同样由backbone 、neck和head三部分组成。相较于YOLOv8,backbone部分有10层,C2f替换为C3k2,SPPF后新增了C2PSA模块;neck部分的C2f同样替换为C3k2,其余模块无变动;head部分将原始检测头优化为更为轻量化的检测头。
模块对比
C2f improvement

code:
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3,

最低0.47元/天 解锁文章
23万+





