INIT:
初始化邻接矩阵
g[][];
| CALL: res = mincut(n);
|
注
: Stoer-Wagner Minimum Cut;
|
找边的最小集合,若其被删去则图变得不连通(我们把这种形式称为最小
|
割问题)
\*==================================================*/
#define
typec
int
// type of res
const
typec inf = 0x3f3f3f3f;
// max of res
const
typec maxw = 1000;
// maximum edge weight
typec g[V][V], w[V];
int
a[V], v[V], na[V];
typec mincut(
int
n){
int
i, j, pv, zj;
typec best = maxw * n * n;
for
(i = 0; i < n; i++) v[i] = i;
// vertex: 0 ~ n-1
while
(n > 1) {
for
(a[v[0]] = 1, i = 1; i < n; i++) {
a[v[i]] = 0; na[i - 1] = i;
w[i] = g[v[0]][v[i]];
}
for
(pv = v[0], i = 1; i < n; i++ ) {
for
(zj = -1, j = 1; j < n; j++ )
if
(!a[v[j]] && (zj < 0 || w[j] > w[zj]))
zj = j;
a[v[zj]] = 1;
if
(i == n - 1) {
if
(best > w[zj]) best = w[zj];
for
(i = 0; i < n; i++)
g[v[i]][pv] = g[pv][v[i]] +=
g[v[zj]][v[i]];
v[zj] = v[--n];
break
;
}
pv = v[zj];
for
(j = 1; j < n; j++)
if
(!a[v[j]])
w[j] += g[v[zj]][v[j]];
}
}
return
best;
}