描述
农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式:
从X移动到X-1或X+1,每次移动花费一分钟
从X移动到2*X,每次移动花费一分钟
假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?
输入
两个整数,N和K
输出
一个整数,农夫抓到牛所要花费的最小分钟数
样例输入
5 17
样例输出
4
改变每一步走的路劲即可
#include<bits/stdc++.h>
using namespace std; using ll = long long;
int dir[4] = { 1, -1, 0, 0 };
//using lll = __int128; template <class T> istream& read(T& x, istream& cin = std::cin) { T num = 0; bool f = 0; char ch = 0; while (!isdigit(ch)) { f |= ch == '-'; if (!cin.get(ch)) return cin; }while (isdigit(ch)) { num = (num << 3) + (num << 1) + (ch ^ 48); if (!cin.get(ch)) break; }x = f ? -num : num; return cin; }template <class T> ostream& write(T x, ostream& cout = std::cout) { if (x < 0) cout.put('-'), x = -x; if (x > 9) write(x / 10); cout.put(x % 10 + '0'); return cout; }ostream& operator<<(ostream& cout, lll x) { write(x); return cout; }istream& operator>>(istream& cin, lll& x) { return read(x); }bool check(int i, int j);
bool check(int i, int j);
const int N = 2e5 + 10, mod = 1e9 + 7, INF = 0x3f3f3f3f;
int n, m;
void init() {
cin >> n >> m;
return;
}
using pii = pair<int, int>;
bool st[N];
int bfs() {
queue<pii> qu;
qu.emplace(n, 0);
st[n] = 1;
while (qu.size()) {
auto [x, d] = qu.front();
qu.pop();
if (x == m) return d;
dir[2] = x;
dir[3] = (x & 1) ? 0 : -x / 2;
for (int i = 0; i < 4; i++) {
int nx = x + dir[i];
if (nx < 0 || nx > m * 2 || st[nx]) continue;
qu.emplace(nx, d + 1);
st[nx] = 1;
}
}
}
void solve() {
cout << bfs();
return;
}
int main(void) {
ios::sync_with_stdio(0); cin.tie(0); cout << setprecision(6) << fixed;
int TT = 1;
//cin >> TT;
for (int ii = 1; ii <= TT; init(), solve(), ii++, cout << "\n") {}
return 0;
}