刘二大人Exercise4-4
import torch
x_data = [1.0,2.0,3.0,4.0]
y_data = [3.0,8.0,15.0,24.0]
w1 = torch.tensor([2.0])
w2 = torch.tensor([3.0])
b = torch.tensor([0.0])
w1.requires_grad = True
w2.requires_grad = True
b.requires_grad = True
def forward(x):
return w1*x**2+w2*x+b
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)**2
print('Predict(before training)',5,forward(5).item())
for epoch in range(100):
for x,y in zip(x_data,y_data):
l = loss(x,y)
l.backward()
print('\grad',x,y,w1.grad.item(),w2.grad.item(),b.grad.item())
w1.data = w1.data - 0.01*w1.grad.item()
w2.data = w2.data - 0.01*w2.grad.item()
b.data = b.data - 0.01*b.grad.item()
w1.grad.data.zero_()
w2.grad.data.zero_()
b.grad.data.zero_()
print('Process:',epoch,l.item())
print('Predict(after training)',5,forward(5).item())