Abstract & Introduction

该文探讨了深度学习模型在解决药物发现中的分子表示和生成问题上的应用。尽管深度学习在捕获问题统计特征上表现出色,但需要正确的归纳偏置。文章指出,传统的指纹技术和图神经网络可能无法捕捉到分子任务所需的复杂关系,特别是长程依赖性。文中还提到了高通量筛选和QSAR方法在药物发现早期阶段的作用,并预告将在后续章节介绍新的分子表示模型、原型学习启发的图神经网络范式、反向合成策略以及分子优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reading notes of《Molecular Graph Representation Learning and Generation for Drug Discovery》


Abstract

  • Deep learning models are powerful because they learn the important statistical features of the problem–but only with the correct inductive biases. We tackle this important problem in the context of two molecular problems: representation and generation.
  • Canonical success of deep learning is deeply rooted in its ability to map the input domain into a meaningful representation space. This is especially poignant for molecular problems, where the “right” relations between molecules is nuanced and complex.

1.Introduction

  • Within these methods, fingerprint techniques are widely popular, and can be broadly categorized into several types including structure-based [30], topological [1], circular [8] and pharmacophore fingerprints [91].
  • However, the problem still lies within the deterministic nature of the generating method: if these predefined rules do not capture the right representation for the task, they will not work well. For instance, property cliffs, a phenomenon in which similar molecules exhibit different properties, remain a challenging problem for many small molecule problems.
  • While sometimes effective,simple paradigm of GNN may not always incorporate the right kind of biases for molecular tasks. For instance, this local neighborhood aggregation can fail to capture long-range dependencies that are important when considering properties of molecules.

1.1.Machine Learning Applications for Drug Discovery

  • During the discovery phase, high throughput screening (HTS) is conducted on large libraries of molecules, which yields candidate molecules, known as hits. These hit molecules then undergo more screening and optimization to generate a smaller set of lead molecules. The selection of hit and lead compounds is the ideal frontier for machine learning methods to pave new improvements.
  • Prior to machine learning, QSAR methods were broadly applied to virtual screening. In its most basic form, QSAR methods use a variety of hand-engineered descriptors, such as simple features including atom and bond counts, molecular weight and ring information; more complex descriptors include higher-order topological features and physicochemical properties.

1.2.Thesis Overview

  • In Chapter 2, I’ll introduce the different rep- resentations of molecules, and new models for their improvement. In the following chapter (Chapter 3), I will talk about another new graph neural network paradigm that borrows ideas from prototype learning. Chapter 4 will talk about retrosynthesis, and how we can produce accurate and diverse synthesis suggestions. Lastly, Chapter 5 will introduce a new method for molecular optimization.
内容概要:本文档介绍了一个多目标规划模型,该模型旨在优化与水资源分配相关的多个目标。它包含四个目标函数:最小化F1(x),最大化F2(x),最小化F3(x)和最小化F4(x),分别对应于不同的资源或环境指标。每个目标函数都有具体的数值目标,如F1的目标值为1695亿立方米水,而F2则追求达到195.54亿立方米等。此外,模型还设定了若干约束条件,包括各区域内的水量限制以及确保某些变量不低于特定百分比的下限。特别地,为了保证模型的有效性和合理性,提出需要解决目标函数间数据尺度不一致的问题,并建议采用遗传算法或其他先进算法进行求解,以获得符合预期的决策变量Xi(i=1,2,...,14)的结果。 适合人群:对数学建模、运筹学、水资源管理等领域感兴趣的科研人员、高校师生及从业者。 使用场景及目标:①适用于研究涉及多目标优化问题的实际案例,尤其是水资源分配领域;②帮助读者理解如何构建和求解复杂的多目标规划问题,掌握处理不同尺度数据的方法;③为从事相关工作的专业人士提供理论参考和技术支持。 阅读建议:由于文档涉及到复杂的数学公式和专业术语,在阅读时应先熟悉基本概念,重点关注目标函数的具体定义及其背后的物理意义,同时注意理解各个约束条件的设计意图。对于提到的数据尺度不一致问题,建议深入探讨可能的解决方案,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值