一、学习任务
- 72. 编辑距离代码随想录
- 647. 回文子串
- 516. 最长回文子序列
二、具体题目
1.72编辑距离72. 编辑距离 - 力扣(LeetCode)
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
-
插入一个字符
-
删除一个字符
-
替换一个字符
-
示例 1:
-
输入:word1 = "horse", word2 = "ros"
-
输出:3
-
解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
-
示例 2:
-
输入:word1 = "intention", word2 = "execution"
-
输出:5
-
解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
- 0 <= word1.length, word2.length <= 500
- word1 和 word2 由小写英文字母组成
1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
确定递推公式:
if (word1[i - 1] == word2[j - 1]) 不操作 if (word1[i - 1] != word2[j - 1]) 增 删 换
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了
操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。即
dp[i][j] = dp[i - 1][j] + 1;
操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。即
dp[i][j] = dp[i][j - 1] + 1;
word2添加一个元素,相当于word1删除一个元素,例如
word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和word2
添加一个元素'd'
,变成word1="a", word2="ad"
, 最终的操作数是一样!操作三:替换元素,
word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。可以回顾一下,
if (word1[i - 1] == word2[j - 1])
的时候我们的操作 是dp[i][j] = dp[i - 1][j - 1]
对吧。那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。所以dp[i][j] = dp[i - 1][j - 1] + 1;
if (word1[i - 1] == word2[j - 1]) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1; }
dp数组如何初始化:dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。那么dp[i][0]就应该对word1里的元素全部做删除操作,即:dp[i][0] = i;同理dp[0][j] = j;
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i; for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i- 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1]; // 不需要操作
}
else {
dp[i][j] = min({dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]}) + 1; //删除/替换均需要加一步
}
}
}
return dp[word1.size()][word2.size()];
}
};
2.647回文子串647. 回文子串 - 力扣(LeetCode)
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
- 输入:"abc"
- 输出:3
- 解释:三个回文子串: "a", "b", "c"
示例 2:
- 输入:"aaa"
- 输出:6
- 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
提示:输入的字符串长度不会超过 1000 。
1. 确定dp数组(dp table)以及下标的含义
在定义dp数组的时候,很自然就会想题目求什么,我们就如何定义dp数组。
绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。
我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。
那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串下标范围[i,j])是否回文,依赖于,子字符串(下标范围[i + 1, j - 1])) 是否是回文。
所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2. 确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } }
注意这里没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
3. dp数组如何初始化
dp[i][j]初始化为false。
4. 确定遍历顺序
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角。
所以一定要从下到上,从左到右遍历(i倒序,j顺序),这样保证dp[i + 1][j - 1]都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。
注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 for (int j = i; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } } } }
class Solution {
public:
int countSubstrings(string s) {
vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
int result = 0;
for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序,i倒序
for (int j = i; j < s.size(); j++) { // j正序
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
dp[i][j] = true;
result++;
}
else if (dp[i + 1][j - 1]) { // 情况三
dp[i][j] = true;
result++;
}
}
}
}
return result;
}
};
3.516最长回文子序列516. 最长回文子序列 - 力扣(LeetCode)
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。
示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。
提示:
- 1 <= s.length <= 1000
- s 只包含小写英文字母
1. 确定dp数组(dp table)以及下标的含义
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
2. 确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,
那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
if (s[i] == s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); }
3. dp数组如何初始化
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。
所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。(单个回文串的情况被特殊考虑,直接初始化了,所以内层循环时j不从i开始,即不考虑长度为1的情况,直接从j = i + 1开始)
其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
4. 确定遍历顺序
从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1]。
所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的。
j的话,可以正常从左向右遍历。
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
for (int i = s.size() - 1; i >= 0; i--) {
// 单个回文串的情况被特殊考虑,直接初始化了,
// 所以内层循环时j不从i开始,即不考虑长度为1的情况,直接从j = i + 1开始
for (int j = i + 1; j < s.size(); j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2; // 前后两个都符合都加进来
}
else { // 前后不相同就看加上哪个可以使得回文子序列更长
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.size() - 1];
}
};