A relationship extraction task requires the detection and classification of semantic relationship mentions within a set of artifacts, typically from text or XML documents. (Understanding Conference in 1998/ binary relations)
Approaches:
- text-based relationship extraction: rely on the use of pretrained relationship structure
- use of domain ontologies
- involves visual detection of meaningful relationships in parametric values of objects listed on a data table that shift positions as the table is permuted
(http://en.wikipedia.org/wiki/Relationship_extraction)
Methods:
There are five different methods of doing Relation Extraction:
进行关系提取有五种不同的方法:
- Rule-based RE 基于规则的资源检索 - through hand-crafted patterns
- Pro:
- Humans can create pattern which tend to have high precisio
- Can be tailored to specific domains
- Cons:
- A lot of manual work to create all possible rules
- Have to create rules for every relation type
- Weakly Supervised RE 弱监督 RE - start out with a set of hand-crafted rules and automatically find new ones from the unlabeled text data, through and iterative process (bootstrapping).
- Supervised RE 监督式 RE
- Distantly Supervised RE 远程监督关系推理
- Unsupervised RE 无监督 RE
(https://medium.com/@andreasherman/different-ways-of-doing-relation-extraction-from-text-7362b4c3169e)
model:(https://nlpprogress.com/english/relationship_extraction.html)
6. End-to-end model: It uses external lexical resources, such as WordNet, part-of-speech tags, dependency tags, and named entity tags.
Model | F1 | Paper / Source | Code |
---|---|---|---|
BERT-based Models | |||
A-GCN (Tian et al., 2021) | 89.85 | Dependency-driven Relation Extraction with Attentive Graph Convolutional Networks | Official |
Matching-the-Blanks (Baldini Soares et al., 2019) | 89.5 | Matching the Blanks: Distributional Similarity for Relation Learning | |
R-BERT (Wu et al. 2019) | 89.25 | Enriching Pre-trained Language Model with Entity Information for Relation Classification | mickeystroller’s Reimplementation |
CNN-based Models | |||
Multi-Attention CNN (Wang et al. 2016) | 88.0 | Relation Classification via Multi-Level Attention CNNs | lawlietAi’s Reimplementation |
Attention CNN (Huang and Y Shen, 2016) | 84.3 | ||
85.9* | Attention-Based Convolutional Neural Network for Semantic Relation Extraction | ||
CR-CNN (dos Santos et al., 2015) | 84.1 | Classifying Relations by Ranking with Convolutional Neural Network | pratapbhanu’s Reimplementation |
CNN (Zeng et al., 2014) | 82.7 | Relation Classification via Convolutional Deep Neural Network | roomylee’s Reimplementation |
RNN-based Models | |||
Entity Attention Bi-LSTM (Lee et al., 2019) | 85.2 | Semantic Relation Classification via Bidirectional LSTM Networks with Entity-aware Attention using Latent Entity Typing | Official |
Hierarchical Attention Bi-LSTM (Xiao and C Liu, 2016) | 84.3 | Semantic Relation Classification via Hierarchical Recurrent Neural Network with Attention | |
Attention Bi-LSTM (Zhou et al., 2016) | 84.0 | Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification | SeoSangwoo’s Reimplementation |
Bi-LSTM (Zhang et al., 2015) | 82.7 | ||
84.3* | Bidirectional long short-term memory networks for relation classification |
- Dependency Models
Model | F1 | Paper / Source 论文/来源 | Code 代码 |
---|---|---|---|
BRCNN (Cai et al., 2016) BRCNN(Cai 等人,2016) | 86.3 | Bidirectional Recurrent Convolutional Neural Network for Relation Classification 用于关系分类的双向循环卷积神经网络 | |
DRNNs (Xu et al., 2016) DRNN(Xu 等人,2016 年) | 86.1 | Improved Relation Classification by Deep Recurrent Neural Networks with Data Augmentation 通过数据增强的深度循环神经网络改进关系分类 | |
depLCNN + NS (Xu et al., 2015a) depLCNN + NS(徐等人,2015a) | 85.6 | Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling 通过简单负采样的卷积神经网络进行语义关系分类 | |
SDP-LSTM (Xu et al., 2015b) SDP-LSTM(徐等人,2015b) | 83.7 | Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path 通过长短期记忆网络沿最短依赖路径对关系进行分类 | Sshanu’s Reimplementation Sshanu 的重新实现" |
"DepNN (Liu et al., 2015) DepNN(Liu 等人,2015) | 83.6 | A Dependency-Based Neural Network for Relation Classification 基于依赖关系的神经网络进行关系分类 | |
FCN (Yu et al., 2014) FCN(Yu 等人,2014) | 83 | Factor-based compositional embedding models 基于因子的组合嵌入模型 | |
MVRNN (Socher et al., 2012) MVRNN(Socher 等人,2012) | 82.4 | Semantic Compositionality through Recursive Matrix-Vector Spaces 通过递归矩阵向量空间实现语义组合 | pratapbhanu’s Reimplementation pratapbhanu 的重新实施 |
- New York Times Corpu
Model | P@10% 磷@10% | P@30% 磷@30% | Paper / Source 论文/来源 | Code 代码 |
---|---|---|---|---|
KGPOOL (Nadgeri et al., 2021) KGPOOL(Nadgeri 等人,2021 年) | 92.3 | 86.7 | KGPool: Dynamic Knowledge Graph Context Selection for Relation Extraction KGPool:用于关系提取的动态知识图谱上下文选择 | KGPOOL |
RECON (Bastos et al., 2021) RECON(Bastos 等人,2021 年) | 87.5 | 74.1 | RECON: Relation Extraction using Knowledge Graph Context in a Graph Neural Network RECON:使用图神经网络中的知识图谱上下文进行关系提取 | RECON |
HRERE (Xu et al., 2019) HRERE(Xu 等,2019) | 84.9 | 72.8 | Connecting Language and Knowledge with Heterogeneous Representations for Neural Relation Extraction 将语言和知识与异构表示连接起来以进行神经关系提取 | HRERE |
PCNN+noise_convert+cond_opt (Wu et al., 2019) PCNN+noise_convert+cond_opt(Wu 等人,2019 年) | 81.7 | 61.8 | Improving Distantly Supervised Relation Extraction with Neural Noise Converter and Conditional Optimal Selector 使用神经噪声转换器和条件最优选择器改进远程监督关系提取 | |
Intra- and Inter-Bag (Ye and Ling, 2019) 袋内和袋间 (Ye and Ling,2019) | 78.9 | 62.4 | Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions 利用袋内和袋间注意力机制进行远程监督关系提取 | Code 代码 |
RESIDE (Vashishth et al., 2018) 居住 (Vashishth 等人,2018) | 73.6 | 59.5 | RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information RESIDE:利用辅助信息改进远程监督神经关系提取 | RESIDE |
PCNN+ATT (Lin et al., 2016) PCNN+ATT(Lin 等人,2016 年) | 69.4 | 51.8 | Neural Relation Extraction with Selective Attention over Instances 通过对实例的选择性注意进行神经关系提取 | OpenNRE 开放NRE |
MIML-RE (Surdeneau et al., 2012) MIML-RE(Surdeneau 等人,2012 年) | 60.7+ | - | Multi-instance Multi-label Learning for Relation Extraction 用于关系提取的多示例多标签学习 | Mimlre 我的名字是 |
MultiR (Hoffman et al., 2011) MultiR(Hoffman 等人,2011 年) | 60.9+ | - | Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations 基于知识的弱监督重叠关系信息提取 | MultiR 多R |
(Mintz et al., 2009) (Mintz 等人,2009 年) | 39.9+ | - | Distant supervision for relation extraction without labeled data 无需标记数据即可进行远程监督关系提取 |