C++动态规划详解

本文深入探讨了动态规划的概念、性质和解题步骤,并通过多个经典例题展示了动态规划在解决实际问题中的应用,包括但不限于:超级台阶问题、矩阵最短路径、最长递增子序列、导弹拦截、数组最大连续子序列和、两个字符串最大公共子序列、0-1背包问题以及找零钱问题。动态规划通过划分阶段、定义状态、状态转移方程和边界条件,有效地解决了这些问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划思想

一、动态规划概念:

  • 动态规划(dp)是研究多步决策过程最优化问题的一种数学方法。在动态规划中,为了寻找一个问题的最优解(即最优决策过程),将整个问题划分成若干个相应的阶段,并在每个阶段都根据先前所作出的决策作出当前阶段最优决策,进而得出整个问题的最优解。即记住已知问题的答案,在已知的答案的基础上解决未知的问题。

  • 在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。可以自行创建一个动态规划表dp,dp一般是个数组,可以是一维也可以是二维数组,根据题中的需要,然后将子问题的最优解填入其中,方便在求解之后的子问题时可以方便调用,进而求出整个问题的最优解。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

  • 动态规划有两种实现方法,一种是递推,另一种是记忆化搜索。两种方法时间复杂度完全相同,但是,递推的效率要比记忆化搜索高不少,而且以后的大量优化技巧都建立在递推上(滚动数组、单调队列、斜率优化……)。所以,我们一般用递推来写动态规划。

二、动态规划的性质:

(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

三、动规解题的一般思路:

动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。

(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。 一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。

四、解题步骤:

  • 拆分问题;

  • 定义状态并找出初状态;

  • 状态转移方程。

五、算法实现的步骤:

1、创建一个一维数组或者二维数组,保存每一个子问题的结果,具体创建一维数组还是二维数组看题目而定,基本上如果题目中给出的是一个一维数组进行操作,就可以只创建一个一维数组,如果题目中给出了两个一维数组进行操作或者两种不同类型的变量值,比如背包问题中的不同物体的体积与总体积,找零钱问题中的不同面值零钱与总钱数,这样就需要创建一个二维数组。注:需要创建二维数组的解法,都可以创建一个一维数组运用滚动数组的方式来解决,即一位数组中的值不停的变化,后面会详细徐叙述

2、找到初始条件,设置数组边界值,一维数组就是设置第一个数字,二维数组就是设置第一行跟第一列的值,特别的滚动一维数组是要设

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值