费米黄金规则的推导


参考:
https://www.zhihu.com/question/304286474
https://zhuanlan.zhihu.com/p/339809311 
https://www.youtube.com/watch?v=fTLTSnqVnNA


微扰不随时间变化的情况下,假设微扰作用时间足够长,跃迁速率将与时间无关。跃迁速率就是对相应跃迁几率的时间导数。

在微扰论中,体系总哈密顿量可以分解为:H=H_0+H^{'}。其中H_0不显含时间,能够精确求解其本征值和本征矢;H^{'}作为微扰相较H_0非常小。

微扰又能分为两类,
1)是认为微扰的作用是造成未受到微扰的系统(即哈密顿量为H_0的系统)运动状态的修正。2)是认为微扰没有对未受到微扰的系统H_0的状态造成任何修正,而是使原系统的状态持续地从一个变到另一个,即发生跃迁

根据H^{'}是否显含时间(常微扰虽然不随时间变化,但是其并不是从零时刻就存在的,而是在某一特定时刻突然施加给系统的,即看做是时间的一个阶跃函数,所以他仍然属于含时微扰)决定采取哪一种微扰。因此,教材常把这两种方法区分为定态微扰论(即H^{'}不显含时间)和含时微扰论。定态微扰论仍然是求解定态薛定谔方程,而含时微扰论则必须用到一般的薛定谔方程。

一般的薛定谔方程出发,可以推导出含时微扰跃迁几率表达式以及跃迁速率表达式,再将常微扰的特殊情况代入,就得到费米黄金规则。

重要应用是计算准粒子的寿命。比如将激发态粒子视作与真空无穷多模光场耦合计算跃迁概率
原子只能吸收一个特定频率的光子跃迁也是因为费米黄金规则。


体系仅受含时微扰V(t)的哈密顿量可写做

H(t)=H_0+V(t)

其中H_0为未微扰哈密顿量,本征态为|n>,有H_0|n>=E_n|n>

系统的波函数可以展开为未微扰态的线性组合:

|\psi (t) > \sum\limits_n {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}} |n >

其中c_n(t)为时间相关概率幅,{​{e^{\frac{​{ - i{E_n}t}}{\hbar }}}}来自H_0的自由演化。

将波函数展开式代入薛定谔方程:{\rm{i}}\hbar \frac{\partial }{​{\partial t}}|\psi (t) > = [{H_0} + V(t)]|\psi (t) >

左侧:
\begin{array}{l} {\rm{i}}\hbar \frac{\partial }{​{\partial t}}\left| {\psi (t)} \right\rangle \\ {\rm{ = i}}\hbar \frac{\partial }{​{\partial t}}\sum\limits_n {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle \\ {\rm{ = i}}\hbar \sum\limits_n {[\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}} + {c_n}(t)(\frac{​{ - i{E_n}t}}{\hbar }){e^{\frac{​{ - i{E_n}t}}{\hbar }}}]} \left| n \right\rangle \\ {\rm{ = i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle + \sum\limits_n {​{E_n}} {c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}\left| n \right\rangle \end{array}

右侧
\begin{array}{l} [{H_0} + V(t)]\left| {\psi (t)} \right\rangle \\ = \sum\limits_n {​{c_n}(t)} {e^{\frac{​{ - i{E_n}t}}{\hbar }}}[{H_0}\left| n \right\rangle + V(t)\left| n \right\rangle ]\\ = \sum\limits_n {​{c_n}(t)} {e^{\frac{​{ - i{E_n}t}}{\hbar }}}[{E_0}\left| n \right\rangle + V(t)\left| n \right\rangle ]\\ = \sum\limits_n {​{E_0}{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle {\rm{ + }}\sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}V(t)} \left| n \right\rangle \end{array}

联立左右侧
{\rm{i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle + \sum\limits_n {​{E_n}} {c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}\left| n \right\rangle {\rm{ = }}\sum\limits_n {​{E_0}{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle {\rm{ + }}\sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}V(t)} \left| n \right\rangle

化简可得

{\rm{i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left| n \right\rangle = \sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}V(t)} \left| n \right\rangle



两侧左乘\left\langle {f|{e^{\frac{​{i{E_f}t}}{\hbar }}}} \right|投影到末态f,且利用正交性 \left\langle {f} \mathrel{\left | {\vphantom {f n}} \right. \kern-\nulldelimiterspace} {n} \right\rangle = {\delta _{fn}}

{\rm{i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left\langle {f} \mathrel{\left | {\vphantom {f n}} \right. \kern-\nulldelimiterspace} {n} \right\rangle {e^{\frac{​{i{E_f}t}}{\hbar }}} = \sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}\left\langle f \right|V(t)} \left| n \right\rangle {e^{\frac{​{i{E_f}t}}{\hbar }}}

其中左侧有
\begin{array}{l} {\rm{i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{ - i{E_n}t}}{\hbar }}}} \left\langle {f} \mathrel{\left | {\vphantom {f n}} \right. \kern-\nulldelimiterspace} {n} \right\rangle {e^{\frac{​{i{E_f}t}}{\hbar }}}\\ = {\rm{i}}\hbar \sum\limits_n {\frac{​{\partial {c_n}(t)}}{​{\partial t}} \cdot {e^{\frac{​{i{E_f}t - i{E_n}t}}{\hbar }}}} {\delta _{fn}}\\ = {\rm{i}}\hbar \frac{​{\partial {c_f}(t)}}{​{\partial t}} \cdot {e^0} = {\rm{i}}\hbar \frac{​{\partial {c_f}(t)}}{​{\partial t}} \end{array}

右侧
\begin{array}{l} \sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{ - i{E_n}t}}{\hbar }}}\left\langle f \right|V(t)} \left| n \right\rangle {e^{\frac{​{i{E_f}t}}{\hbar }}}\\ {\rm{ = }}\sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{i({E_f} - {E_n})t}}{\hbar }}}\left\langle f \right|V(t)} \left| n \right\rangle \\ {\rm{ = }}\sum\limits_{\rm{n}} {​{c_n}(t){e^{\frac{​{i({E_f} - {E_n})t}}{\hbar }}}\left\langle f \right|V(t)} \left| n \right\rangle \end{array}

此处引入了\omega_{fn}=\frac{E_f-E_n}{\hbar}

得到
{\rm{i}}\hbar \frac{​{d{c_f}(t)}}{​{dt}}{\rm{ = }}\sum\limits_{\rm{n}} {​{c_n}(t)\left\langle f \right|V(t)} \left| n \right\rangle {e^{i{\omega _{fn}}t}}



假设由于很弱的微扰V(t)导致的跃迁初态为\left| i \right\ranglec_i^{(0)}(0)=1 ; c_{n\neq i}^{(0)}(0)=0 (t=0时,只可能存在于初态上)
可以将概率幅c_n(t)按照微扰阶次展开
c_n(t)=c_n^{(0)}(t)+c_n^{(1)}(t)+c_n^{(2)}(t)+...
其中c_n^{(0)}(t)为无微扰时的演化,c_n^{(1)}(t)为由V(t)的一次作用引起的作用...


零阶近似(无微扰)下,概率幅应不随时间变化:
\frac{dc_n^{(0)}(t)}{dt}=\frac{1}{i\hbar}\sum_{n}\left \langle n|V(t)|n \right \rangle c_n^{(0)}(t)=0

c_n^{(0)}(t)=c_n^{(0)}(0)

联立c_i^{(0)}(0)=1 ; c_{n\neq i}^{(0)}(0)=0

c_i^{(0)}(t)=1c_n^{(0)}(t)=0


将概率幅展开式代入{\rm{i}}\hbar \frac{​{d{c_f}(t)}}{​{dt}}{\rm{ = }}\sum\limits_{\rm{n}} {​{c_n}(t)\left\langle f \right|V(t)} \left| n \right\rangle {e^{i{\omega _{fn}}t}},且保留到一阶项。
{\rm{i}}\hbar \frac{d}{​{dt}}{\rm{(}}c_f^{(0)}(t){\rm{ + }}c_f^{(1)}(t){\rm{) = }}\sum\limits_n {\left\langle {f|V(t)|n} \right\rangle {e^{i{\omega _{fn}}t}}[c_n^{(0)}(t) + c_n^{(1)}(t)]}

在我们研究的问题里,末态和初态必然不是同一个态,即 f\neq i,那么有c_f^{(0)}(t)=0 。

此外由于c_n^{(1)}(t)为一阶小量,导致<f|V|n> c_n^{(1)}(t)为二阶小量,可以忽略。

方程得以进一步化简:
i\hbar \frac{​{dc_f^{(1)}(t)}}{​{dt}} = \sum\limits_n {\left\langle {f|V(t)|n} \right\rangle {e^{i{\omega _{fn}}t}}c_n^0(t)}


因为当n\neq i时,c_n^{(0)}(t)=0,故求和内只保留 n= i 项
i\hbar \frac{​{dc_f^{(1)}(t)}}{​{dt}} = \left\langle {f|V(t)|i} \right\rangle {e^{i{\omega _{fi}}t}}c_i^0(t)

又因为c_i^{(0)}(t)=1,有
i\hbar \frac{​{dc_f^{(1)}(t)}}{​{dt}} = \left\langle {f|V(t)|i} \right\rangle {e^{i{\omega _{fi}}t}}




\frac{​{dc_f^{(1)}(t)}}{​{dt}} = \frac{1}{​{i\hbar }}\left\langle {f|V(t)|i} \right\rangle {e^{i{\omega _{fi}}t}}

对时间积分得

c_f^{(1)}(t) = \frac{1}{​{i\hbar }}\int_0^t {\left\langle {f|V(t')|i} \right\rangle {e^{i{\omega _{fi}}t'}}dt'}

跃迁概率幅为:

{\rm{c}}_f^{(1)}(t) = \frac{1}{​{i\hbar }}\int_0^t { < f|V(t')|i > {e^{i{\omega _{fi}}t'}}dt'}

其中\omega_{fi}=\frac{E_f-E_i}{\hbar}

光电场可表示为 E(t)=E_0e^{-i\omega t}

电子与光子相互作用,可以表示为电子与光电场的相互作用
V(t)=-eE(t)\cdot r =-eE_0\cdot re^{-i\omega t}=Ve^{-i\omega t}

假设微扰为简谐振荡(电磁场的周期性振荡)

V(t) = V{e^{ - i\omega t}} + {V^\dag }{e^{i\omega t}}

其中

{V }{e^{-i\omega t}}对应吸收光子(能量增加\hbar \omega

{V^\dag }{e^{i\omega t}}对应发射光子(能量减少\hbar \omega

对于光吸收问题,微扰为光子的吸收,即对应{V }{e^{-i\omega t}}。(同时考虑光发射的情况在参考的知乎专栏内有写,此处为了方便就省略了)

V(t')=Ve^{-i \omega t'}

于是

<f|V(t')|i>=<f|Ve^{-i \omega t'}|i>=<f|V|i>e^{-i \omega t'}

代入概率幅{\rm{c}}_f^{(1)}(t)的表达式有

{\rm{c}}_f^{(1)}(t) \\= \frac{1}{​{i\hbar }}\int_0^t { < f|V|i > {e^{ - i\omega t'}}{e^{i{\omega _{fi}}t'}}dt'} \\= \frac{1}{​{i\hbar }} < f|V|i > \int_0^t {​{e^{i({\omega _{fi}} - \omega )t'}}dt'}

其中对时间的积分可以化简:

\int_0^t {​{e^{i({\omega _{fi}} - \omega )t'}}dt'} {\rm{ = }}\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{i({\omega _{fi}} - \omega )}}

于是跃迁概率幅为

{\rm{c}}_f^{(1)}(t) = \frac{1}{​{i\hbar }} < f|V|i > \frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{i({\omega _{fi}} - \omega )}}= {\rm{ - }}\frac{1}{\hbar } < f|V|i > \frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}


跃迁概率(概率幅的平方)

{P_{i \to f}}(t) = |{\rm{c}}_f^{(1)}(t){|^2} = \frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}}|\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2}

右侧的|\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2}可通过三角函数化为

|\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2} = \frac{​{​{​{\sin }^2}(\frac{​{\Delta \omega }}{2}t)}}{​{​{​{(\frac{​{\Delta \omega }}{2}t)}^2}}}

其中{\Delta \omega }=\omega_{fi}-\omega

证明

因为|\frac{A}{B}{|^2} = \frac{​{|A{|^2}}}{​{|B{|^2}}}

|\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2} = \frac{​{|{e^{i({\omega _{fi}} - \omega )t}} - 1{|^2}}}{​{|({\omega _{fi}} - \omega ){|^2}}}

\Delta \omega = {\omega _{fi}} - \omega,将分子写为|{e^{i\Delta \omega t}} - 1{|^2}

使用欧拉公式打开分子

|{e^{i\Delta \omega t}} - 1{|^2} = {[\cos (\Delta \omega t) - 1]^2} + {\sin ^2}(\Delta \omega t)

进一步化简右侧

{[\cos \theta - 1]^2} + {\sin ^2}\theta = {\cos ^2}\theta - 2\cos \theta + 1 + {\sin ^2}\theta = 2 - 2\cos \theta

于是

|{e^{i\Delta \omega t}} - 1{|^2} = {[\cos (\Delta \omega t) - 1]^2} + {\sin ^2}(\Delta \omega t) = 2[1 - \cos (\Delta \omega t)]

利用半角公式1 - \cos \theta = 2{\sin ^2}(\frac{\theta }{2})进一步化简有
\begin{array}{l} |{e^{i\Delta \omega t}} - 1{|^2}\\ = 2[1 - \cos (\Delta \omega t)]\\ {\rm{ = }}4{\sin ^2}(\frac{​{\Delta \omega t}}{2}) \end{array}

代回\frac{​{|{e^{i({\omega _{fi}} - \omega )t}} - 1{|^2}}}{​{|({\omega _{fi}} - \omega ){|^2}}}

\frac{​{|{e^{i({\omega _{fi}} - \omega )t}} - 1{|^2}}}{​{|({\omega _{fi}} - \omega ){|^2}}} = \frac{​{4{​{\sin }^2}(\frac{​{\Delta \omega t}}{2})}}{​{​{​{(\Delta \omega )}^2}}}



t\rightarrow \infty情况化简

\delta 函数的缩放性质:\delta (ax) = \frac{1}{​{|a|}}\delta (x)

\delta (\frac{​{\Delta \omega }}{2}) =2 \delta (\Delta \omega )

sin^2x可以展开为{\sin ^2}x = \frac{​{1 - \cos (2x)}}{2}

{\sin ^2}(\frac{​{\Delta \omega t}}{2}) = \frac{​{1 - \cos (\Delta \omega t)}}{2}

于是

\frac{​{|{e^{i({\omega _{fi}} - \omega )t}} - 1{|^2}}}{​{|({\omega _{fi}} - \omega ){|^2}}} = \frac{​{4{​{\sin }^2}(\frac{​{\Delta \omega t}}{2})}}{​{​{​{(\Delta \omega )}^2}}}{\rm{ = }}\frac{​{2[1 - \cos (\Delta \omega t)]}}{​{​{​{(\Delta \omega )}^2}}}

现在考虑

t \to \infty,且 \Delta \omega =0 时,

存在\mathop {\lim }\limits_{​{\rm{t}} \to \infty } \frac{​{4{​{\sin }^2}(\frac{​{\Delta \omega }}{2}t)}}{​{​{​{(\Delta \omega )}^2}}} = 2\pi t\delta (\Delta \omega )

于是有

\mathop {\lim }\limits_{​{\rm{t}} \to \infty } |\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2} = \mathop {\lim }\limits_{​{\rm{t}} \to \infty } \frac{​{4{​{\sin }^2}(\frac{​{\Delta \omega }}{2}t)}}{​{​{​{(\Delta \omega )}^2}}} = 2\pi t\delta (\Delta \omega )

t \to \infty时跃迁几率为

\begin{array}{l} {P_{i \to f}}(t)\\ = |{\rm{c}}_f^{(1)}(t){|^2} = \frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}}\mathop {\lim }\limits_{​{\rm{t}} \to \infty } |\frac{​{​{e^{i({\omega _{fi}} - \omega )t}} - 1}}{​{({\omega _{fi}} - \omega )}}{|^2}{\rm{ = }}\frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}} \cdot 2\pi t\delta (\Delta \omega ) \end{array}

{P_{i \to f}}(t){\rm{ = }}\frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}} \cdot 4\pi t\delta (\Delta \omega )

\Delta \omega {\rm{ = }}{\omega _{fi}} - \omega {\rm{ = }}\frac{​{​{E_f} - {E_i}}}{\hbar } - \omega = \frac{​{​{E_f} - {E_i} - \hbar \omega }}{\hbar }

\begin{array}{l} {P_{i \to f}}(t) = \frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}} \cdot 2\pi t\delta (\frac{​{​{E_f} - {E_i} - \hbar \omega }}{\hbar }) = \frac{​{| < f|V|i > {|^2}}}{​{​{\hbar ^2}}} \cdot 2\pi \hbar t\delta ({E_f} - {E_i} - \hbar \omega )\\ = \frac{​{2\pi t}}{\hbar }| < f|V|i > {|^2}\delta ({E_f} - {E_i} - \hbar \omega ) \end{array}

于是跃迁速率(单位时间s内的跃迁概率)为
\begin{array}{l} {\Gamma _{i \to f}}{\rm{ = }}\frac{​{d{P_{i \to f}}(t)}}{​{dt}}{\rm{ = }}\frac{d}{​{dt}}[\frac{​{2\pi t}}{\hbar }| < f|V|i > {|^2}\delta ({E_f} - {E_i} - \hbar \omega )]\\ = \frac{​{2\pi }}{\hbar }| < f|V|i > {|^2}\delta ({E_f} - {E_i} - \hbar \omega ) \end{array}

即费米黄金规则

{\Gamma _{i \to f}} = \frac{​{2\pi }}{\hbar }| < f|V|i > {|^2}\delta ({E_f} - {E_i} - \hbar \omega )



连续的末态

对于连续的末态,需将所有可能的末态\left| f \right\rangle求和,并转换为对能量的积分({\rho ({E_f})}为末态态密度):

\sum\limits_f \to \int {\rho ({E_f})d{E_f}}

对所有可能的末态\left| f \right\rangle的跃迁概率求和

{P_{total}}(t) = \sum\limits_f {​{P_{i \to f}}(t)} = \int {​{P_{i \to f}}(t)\rho ({E_f})d{E_f}}

{​{P_{i \to f}}(t) = \frac{​{2\pi t}}{\hbar }| < f|V|i > {|^2}\delta ({E_f} - {E_i} - \hbar \omega )}代入上式有

{P_{total}}(t) = \frac{​{2\pi t}}{​{​{\hbar}}}\int {​{​{\left| {\left\langle {f|V|\left. i \right\rangle } \right.} \right|}^2}\delta ({E_f} - {E_i} - \hbar \omega )} \rho ({E_f})d{E_f}

积分中仅有满足条件 E_f-E_i-\hbar\omega=0 的项不为零

{P_{total}}(t){\rm{ = }}\frac{​{2\pi t}}{​{​{\hbar }}}{\left| {\left\langle {f|V|\left. i \right\rangle } \right.} \right|^2}{\left. {\rho ({E_f})} \right|_{​{E_f} = {E_i} + \hbar \omega }}

于是跃迁速率:

{\Gamma _{i \to f}} = \frac{​{2\pi }}{\hbar }{\left| {\left\langle {f|V|\left. i \right\rangle } \right.} \right|^2}{\left. {\rho ({E_f})} \right|_{​{E_f} = {E_i} + \hbar \omega }}

或把矩阵元写为 {\left\langle {f|V|\left. i \right\rangle } \right.}=V_{if} 则

{\Gamma _{i \to f}} = \frac{​{2\pi }}{\hbar }{\left| {​{V_{if}}} \right|^2}\rho ({E_f})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值