因【牛客版权】不放题面了
B.炸鸡块君与FIFA22
简化题意
每次询问有一个初始分数,求经过字符串S[l,r]的操作之后,分数为多少
S i S_i Si | Δ \Delta Δ |
---|---|
W | +1 |
L | -1(如果之前分数为3的倍数,则不-1) |
D | +0 |
思路
不论起始分数为多少,区间[l,r]中的W
,D
操作是不受影响的,只有L
操作会因为起始分数不同而导致在不同的点满足L
失效条件:
(
s
+
Δ
)
%
3
=
0
(s+\Delta)\%3=0
(s+Δ)%3=0
可以利用ST表,预处理出区间[l,r]在[0,1,2]作为起始分数(因为起始分数对后面的影响只关于它是不是3的倍数)的情况下的区间贡献 Δ \Delta Δ
转移方程:
d
p
[
i
]
[
j
]
[
z
]
=
d
p
[
i
]
[
j
−
1
]
[
z
]
+
d
p
[
i
+
(
1
<
<
(
j
−
1
)
)
]
[
j
−
1
]
[
(
(
z
+
d
p
[
i
]
[
j
−
1
]
[
z
]
)
%
3
+
3
)
%
3
]
dp[i][j][z]=dp[i][j-1][z]+dp[i+(1<<(j-1))][j-1][((z+dp[i][j-1][z])\%3+3)\%3]
dp[i][j][z]=dp[i][j−1][z]+dp[i+(1<<(j−1))][j−1][((z+dp[i][j−1][z])%3+3)%3]
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 2e5 + 10;
char arr[maxn];
int dp[maxn][21][3], mi[21];
int main() {
int n, q; cin >> n >> q;
for (int i = 1; i <= n; i++) cin >> arr[i];
for (int i = 1; i <= n; i++) {
for (int z = 0; z < 3; z++) {
if (arr[i] == 'W') dp[i][0][z]++;
else if (arr[i] == 'L' && z != 0) dp[i][0][z]--;
}
}
mi[0] = 1;
for (int i = 1; i <= 20; i++) {
mi[i] = mi[i - 1] * 2;
}
for (int j = 1; j <= 20; j++) {
for (int i = 1; i + mi[j] - 1 <= n; i++) {
for (int z = 0; z < 3; z++) {
dp[i][j][z] = dp[i][j - 1][z] + dp[i + mi[j - 1]][j - 1][((z + dp[i][j - 1][z]) % 3 + 3) % 3];
}
}
}
while (q--) {
int l, r, s; cin >> l >> r >> s;
int z = s % 3;
int res = 0;
for (int j = 20; j >= 0; j--) {
if (l + mi[j] - 1 <= r) {
res += dp[l][j][z];
z = ((z + dp[l][j][z]) % 3 + 3) % 3;
l += mi[j];
}
}
cout << res + s << "\n";
}
}
K.冒险公社
简化题意
给你一个字符串 A A A, A i A_i Ai 表示 a i − 2 , a i − 1 , a i a_{i-2},a_{i-1},a_i ai−2,ai−1,ai的颜色组合情况
A i A_i Ai | 颜色组合 |
---|---|
R R R | R > G R>G R>G |
G G G | R < G R<G R<G |
B B B | R = G R=G R=G |
求在给定的罗盘预测颜色字符串sta
的情况下,原岛屿的颜色组合中,绿色最多的那种情况下的绿色数量为多少
思路
因为对于一个预测 s t a i sta_i stai决定了 a i − 2 , a i − 1 , a i a_{i-2},a_{i-1},a_i ai−2,ai−1,ai的颜色组合情况, s t a i + 1 sta_{i + 1} stai+1决定了 a i − 1 , a i , a i + 1 a_{i-1},a_{i},a_{i+1} ai−1,ai,ai+1的颜色组合情况,从状态 s t a i sta_i stai转移到 s t a i + 1 sta_{i + 1} stai+1, s t a i + 1 sta_{i + 1} stai+1复用了 a i − 1 , a i a_{i-1},a_i ai−1,ai,而 a i − 2 a_{i-2} ai−2对于 s t a i + 1 sta_{i + 1} stai+1是没有影响的,所以我们只需要在满足 s t a i sta_i stai的所有{a}的情况下,枚举 a i + 1 a_{i+1} ai+1,判断{{a}+ a i + 1 a_{i+1} ai+1}是否合法。
转移方程:
d
p
[
i
]
[
c
2
]
[
c
3
]
[
c
4
]
=
m
a
x
(
t
h
i
s
,
d
p
[
i
−
1
]
[
c
1
]
[
c
2
]
[
c
3
]
)
dp[i][c2][c3][c4]=max(this,dp[i-1][c1][c2][c3])
dp[i][c2][c3][c4]=max(this,dp[i−1][c1][c2][c3])
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 1e5 + 10;
int dp[maxn][3][3][3];
void add(vector<int> vt, int vis, int &res){
for(auto &te: vt) if(te == vis) res++;
return;
}
void max(int &x, int y){
if(x < y)
x = y;
return;
}
int main(){
int n; cin >> n;
string sta; cin >> sta;
memset(dp, -1, sizeof dp);
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
for(int z = 0; z < 3; z++){
int R = 0, G = 0, B = 0;
add({i, j, z}, 0, G);
add({i, j, z}, 1, R);
add({i, j, z}, 2, B);
if(sta[2] == 'G' && G > R || sta[2] == 'R' && R > G || sta[2] == 'B' && R == G){
dp[2][i][j][z] = G;
}
}
}
}
for(int index = 3; index < n; index++){
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
for(int z = 0; z < 3; z++){
if(dp[index - 1][i][j][z] == -1) continue;
for(int k = 0; k < 3; k++){
int R = 0, G = 0, B = 0;
add({j, z, k},0, G);
add({j, z, k}, 1, R);
add({j, z, k}, 2, B);
if(sta[index] == 'G' && G > R){
max(dp[index][j][z][k], dp[index - 1][i][j][z] + (k == 0));
}
if(sta[index] == 'R' && R > G){
max(dp[index][j][z][k], dp[index - 1][i][j][z] + (k == 0));
}
if(sta[index] == 'B' && R == G){
max(dp[index][j][z][k], dp[index - 1][i][j][z] + (k == 0));
}
}
}
}
}
}
int res = -1;
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
for(int z = 0; z < 3; z++)
max(res, dp[n - 1][i][j][z]);
cout << res;
}