时间序列分析 #ARMA模型的识别与参数估计 #R语言

掌握ARMA模型的识别和参数估计。

原始数据在文末!!!

练习1、

根据某1915-2004年澳大利亚每年与枪支有关的凶杀案死亡率(每10万人)数据(题目1数据.txt),求:

第1小题:

(1)通过单位根检验,判断该序列的平稳性;判断该序列的纯随机性;

    (2) 绘制序列的样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展;

    (3)利用auto.arima()函数,对该序列进行系统自动定阶。

data <- read.table("F:/时间序列分析/实验6/习题数据/题目1数据.txt",header = T)
x <- ts(data[,2],start=1915)
#第1小题
#原序列ADF检验
library(aTSA)
adf.test(x)
#原序列白噪声检验
for(i in 1:2) print(Box.test(x,type = "Ljung-Box",lag = 6*i))
#原序列绘制自相关图和偏自相关图
par(mfrow = c(1,2))
acf(x)
pacf(x)
#自动识别模型
library(zoo)
library(forecast)
#系统自动定阶
auto.arima(x)

结果分析:

第1小题:

(1)

单位根检验:检验结果显示该序列可认为是平稳序列(带漂移项无滞后模型和既有漂移项又有趋势项的无滞后模型的P值小于0.05)。

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -1.473   0.149

[2,]   1 -1.037   0.306

[3,]   2 -0.896   0.357

[4,]   3 -0.835   0.379

Type 2: with drift no trend

     lag   ADF p.value

[1,]   0 -4.54  0.0100

[2,]   1 -2.88  0.0543

[3,]   2 -2.25  0.2309

[4,]   3 -1.46  0.5330

Type 3: with drift and trend

     lag   ADF p.value

[1,]   0 -4.53   0.010

[2,]   1 -2.86   0.219

[3,]   2 -2.22   0.480

[4,]   3 -1.40   0.823

----

Note: in fact, p.value = 0.01 means p.value <= 0.01

白噪声检验:延迟6阶和延迟12阶的LB统计量的P值都小于α=0.05,则拒绝原假设,认为序列不是白噪声序列。

    Box-Ljung test

data:  x

X-squared = 92.781, df = 6, p-value < 2.2e-16

    Box-Ljung test

data:  x

X-squared = 108.89, df = 12, p-value < 2.2e-16

(2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值