机器学习实战----使用Python和Scikit-Learn构建简单分类器

在这里插入图片描述

前言: Hello大家好,我是Dream。 今天来学习一下如何使用Python和Scikit-Learn构建一个简单的分类器

一、介绍

今天我们将学习使用Python和Scikit-Learn创建一个简单的文本分类器来识别垃圾邮件。我们将先介绍数据集,并通过可视化和数据预处理方式更好地理解数据集。接着,我们将选择一个算法并使用训练集拟合它。最后,我们将评估该分类器并使用新数据进行预测。

二、数据集

我们选择的数据集是Enron-Spam,由Enron公司员工分享。该数据集包含邮箱中的1598封正常邮件和3977封垃圾邮件。我们将使用这些邮件的主题作为分类器的特征,并使用0表示正常邮件,1表示垃圾邮件。
机器学习领域使用Enr

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Dream呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值